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Common Mode Rejection Ratio for Cascaded
| Differential Amplifier Stages

Ramén Pallds-Areny, Senior Member, IEEE, and John G. Webster, Fellow, IEEE

Abstract—We provide a simple equation for calculating the
total common mode rejection ratio, CMRRy, for cascaded dif-
ferential amplifier stages and apply it to several typical cases
in instrumentation circuits. We define two factors for each
stage, C and D, and show that, in general, CMRR; can be cal-
culated by adding the reciprocals of the equivalent CMRR for
each stage, which we define as the product of its C factor and
the product of D factors for the preceding stages.

I. INTRODUCTION

HE NEED for CMRR calculations in cascaded differ-

ential stages arises in many circuits dealing with dif-
ferential signals. A simple case is the three-op-amp in-
strumentation amplifier (IA), for which a complete
analysis has already been published [1]. No general rule
is known, however, for cases with three or more stages.
These cases arise, for example, in time-division multi-
plexed systems when there is a differential multiplexer be-
tween input buffers and a common differential amplifier
(DA) based on a single op amp or an IA, or, more com-
monly, when the effect of input stray capacitance imbal-
ance is considered in IAs. Another case is the use of volt-
age divider probes in oscilloscopes with differential
inputs.

According to [2], a circuit stage with a differential input
and a differential output can be described by means of
four transfer functions. These are Gpp, Gcc, Gep, and
Gpc- Gpp is the differential mode gain: output differential
mode signal/input differential mode signal, when there is
no input common mode signal. G¢c is the common mode
gain: output common mode signal/input common mode
signal, when there is no input differential mode signal.
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Fig. 1. Differential system consisting of three cascaded stages, the last one
with a single-ended output.

caded differential input/differential output stages con-
nected to a last stage with a single-ended output. We pro-
vide the equations that allow us to verify whether or not
the approximate formulas are acceptable, and give appli-
cation examples based on typical situations in instrumen-
tation circuits.

II. CMRR CALCULATION

Fig. 1 shows a system consisting of three differential
stages, the last stage having a single-ended output. As
usual when dealing with transfer functions, we assume
that no stage loads the preceding one. By applying the
foregoing definitions for the transfer functions for each
stage, we obtain

v, = v4lGpp1Gpp2Gpp3 + GopiGep2Gpes
+ GepiGpe2Gpps + GepiGee2 Gpesl
+ v.[GpciGpp2Gpps + GpciGep2 Gpes
+ GeerGpe2 Gops + GeaiGecz2 Gpesl- 1

The common mode rejection ratio for the system is de-
fined as the quotient between the output due to a differ-
ential input voltage and the output due to a common mode
voltage of the same magnitude. We have therefore,

_ Gppy(Gpp2Gpp3 + Gcp2Gpes) + Gepi(Gpea Gops + Geca Gpey)

CMRR; =

Gcp is the differential to common mode gain, that is, the
output common mode signal due to the input differential
signal. Gpc is the common mode to differential gain, that
is, the output differential signal due to the input common
mode signal. When cascading more than two of these
stages, however, the use of these transfer functions is very
cumbersome.

In this paper we give a simple rule to calculate the total
common mode rejection ratio (CMRRy) for several cas-
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Gpci(Gpp2Gops + Gep2Gpes) + Gee(Gpea Gops + Gecz Gpcs)'

@)
Let us define three ratios for each stage:
C; = Gppi/ Goci 3
D; = Gppi/ Geei 4)
E; = Gcpi/ Gppi- (&)

Now, if the second and third stages were both perfect from
the point of view of differential amplification, Gepy =
Gpca = Gpes = 0, and CMRR7 would be determined by
the first stage, that is, CMRR; = CMRR, in this case. By
applying this in (2) we obtain
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CMRR, = g‘;‘c’: = C,. )

If the first and third stages were the perfect stages, we
would have

Gop1 G
CMRR, = —221 702 _ p ¢, )
GCCI GDCZ

If the first and second stages were the perfect stages, we
would have

GDDI GDDZ GDD3
CMRR, = — ——= = D\D,C;. 8
>~ Gear Geer Gpey 12 ®

By rearranging (2) and using the definitions in (3) and (4),
we obtain
.
_<1 + GCD2L> + L(L +ii>
1 B G Gppz Gy D, \C, D, G
Gepy 1 + Gep (i + LL)
Gpp1 \C; D, Gy
&)

CMRR; ~
Gppz Cs
Whenever E; << C;; and E; << D;, C;,,, (i = 1, 2,
3), (9) simplifies to

1+

1 ' 1 1 1
= + + .
CMRR; CMRR, CMRR, CMRR,

(10)

Therefore, the total CMRR can be calculated by adding
the reciprocals of the equivalent CMRRs for each stage.
The equivalent CMRR for each stage is the product of its
C factor, times the product of the D factors for the pre-
ceding stages. Note that for stages with a single-ended
output, i.e., without a common mode output voltage, the
C factor coincides with the usual definition for the CMRR,
D is infinite because G¢c = 0, and E = 0 because G¢p =
0. The extension of the rule formulated by (10) to more
than three stages is straightforward.

III. APPLICATION

The preceding rule for CMRR; calculation is so simple
that it is instructive to analyze whether the simplifications
leading from (9) to (10) are acceptable in typical cases.
One situation of interest consists of what we call ‘‘non-
coupled paths stage,”” shown in Fig. 2. The differential
signal goes through two independent paths, each de-
scribed by its own transfer function. By applying the cor-
responding definitions for differential and common mode
transfer functions, we obtain

Gpp = [H((s) + Hy(5)]/2 (11a)
Gep = [Hi(s) — Hy(9)]/4 (11b)
Gpc = H\(s) — Hy(s) (11c)
Gee = [Hi(s) + Hy(9)]/2. (119)
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Fig. 2. A stage with noncoupled paths: The differential signal goes through
two independent paths, cach one described by its own transfer func-
tion. :

From here we see that for noncoupled paths we have D
=1, E = 1/4C, regardless of the particular implemen-
tation. Factors C and E depend on transfer functions H(s)
and H, (s).

For a differential analog multiplexer integrated circuit,
for example, the situation can be described by the model
in Fig. 3(a). R, and R, are the respective ON resistances
for each channel, and C} and Cj are their output capaci-
tances. Therefore, we have

H\(s) = p -(:lw, (12a)
Wy

= 12b

B s+ w, ( )

where w; = 1/R,C{ and w, = 1/R, C;. We can take into
account the mismatch between channels by defining aver-
age and incremental resistance capacitance as follows,

R,= (R, +Ry)/2 (13a)
R, =R —-R, (13b)
C,=(C1+ /2 (14a)
C =C - C. (14b)
Finally we obtain,
JoR,C, + 1 (15)

= “jo®R,C, + RCy

Specifications for the DG507A model (Siliconix), for ex-
ample, are R, = 270 Q, R, /R, = 6%, C, = 23 pF. C; is
assumed to be zero. By applying (15), at 10 kHz we ob-
tain C = j42735 = 92.6 dB/90°. Then E = —104.6
dB/—90°, and the assumptions leading to (10) will be
correct even if the succeeding stage is far from ideal, i.e.,
its factor C is not very high. Note that for this stage CMRR
= C, which has a 90° phase shift.

Another example of a noncoupled differential stage is
provided by two voltage divider probes connected to an
oscilloscope with a differential input (Fig. 3(b)). We as-
sume that the probes are compensated before measuring,
i.e., R, C,; = R, Gy, R,»C,y = R,,C,,. Then we have

Rol
H(s) = o7

(16a)
R, + R,
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Fig. 3. Different examples of noncoupled differential stages. (a) differen-
tial multiplexer, (b) voltage divider probes connected to a differential os-
cilloscope, (c) source impedance and common mode input impedance in
differential amplifier, (d) unity gain buffers pair.

RoZ
H. = —
1) Rpy + Ry (16b)
and
12R,R,, + R,\R,» + R,,R
C=- 11%2 11p2 28481 (17)

2 Ro]Rp2 - RaZRpl

Resistor mismatching can be taken into account by con-
sidering their tolerance ¢. If we assume that ¢ is the same

intended for differential measurements, in addition to the
common probe compensation trimmer capacitor.

A third example of noncoupled paths is provided by
input imbalance in differential amplifiers (Fig. 3(c)). We
assume a resistive source impedance but otherwise a com-
mon mode input impedance with resistive and capacitive
components. The corresponding transfer functions are

Rcl

for all the resistors involved and call k the ratio between Hy(s) = R, + R, + RR,C.s (192)
nominal values, k = Ry /R,, in a worst-case condition
we have Re 19b
Hy(s) = -
co Ltk a8 20) = R ¥ R,y + RoRCors (199
4kt -
so that now we have
C= 12R.\Rs + RyRy + RR., + SRR, (R Cy + Ry Cro) (20)
2 RR,, — RiR, + SRR, (R,Cr — RCr)

For a 10:1 probe, k = 9 and therefore the value for E
will usually be low enough to accept (10), but at the same
time we see that extremely low tolerances would be nec-
essary to obtain a CMRRy, say, larger than 60 dB. This
suggests the provision for resistor adjustment in probes

Usually, we have R, << R, R, << R.,, and (20) sim-
plifies to

L+ sRCy + R,C.») /2
S(RZCL‘2 - Rlccl) '

@n
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If the main problem is stray capacitances, we can assume
R =R, =R, R, =R, =R, and define Ci= -
Ce2, Cy + C.y = 2C,,. In this case,

C =

Cca :
—c +i/eRC, (2)

and a 10% imbalance (C,/C,, = 0.1), for example,
would imply C = —10 + j/ wRCC,
In a similar way, when the problem is mainly one of
source imbalance, we can assume R,; = R,=R,C, =
C:2 = C,, and define R, = R, — R,, 2R, = R +R,. In
this case,
C= —R,/R; + j/wR,C.. (23)

A pair of unity gain buffers, Fig. 3(d), offers a common
example of active noncoupled paths. Here we assume that
open loop differential and common mode gains (hence
CMRR) are not identical for both op amps. Therefore,
AnRCMRRy,, + 1)
An(2CMRRy,, — 1) + 2CMRR,,,

Apn(2CMRRyy, + 1)
A (2CMRRo; — 1) + 2CMRR,,,

where A4, is the open loop differential gain and CMRR,,,

H(s) = (24a)

Hy(s) = (24b)

Factor.C is now
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Fig. 4. Input stage for the three-op-amp instrumentation amplifier, as an
example of a “‘coupled”” differential stage.

where the “‘0’” in subindices stands for dc values, and

Wz1Waz(Aig — Az)
W = (28a
) Aowa — Ay )
W = wclwcz(CMRRZO - CMRR]()) (28b)

CMRRzowcz - CMRR]()&JCI ’

If, for example, we consider two op amps whose dc gains
and corner frequencies are 10% different, we have

1 1 s+ wy/2 1 s+ w/2
is the common mode rejection ratio for each op amp. C= 04, w 72 + 06, w./2 29
C= 12 + 1/Ay + 1/A4 + 1/2A,, CMRR,,, + 1/2A4,CMRR, — 1/2CMRRy,,CMRR 1, 25)

21/As = 1/A4 + 1/CMRRy, — 1/CMRRoz, + 1/24,;,CMRRy; — 1 /24,CMRR 4,

Given the typical values for open loop differential and
common mode gains for op amps at the working frequen-
cies, (25) can be greatly simplified and leads to

LA T IO !
CMRROAZ'

(26)

It is very important to notice the result if instead of unity
gain buffers we used two amplifiers with gain. Then the
transfer functions would have been determined by feed-
back (passive) components, and we would have obtained
a value for C dependent on component tolerances. This

E =

In most op amps w; << w,, and (29) can be approximated
by the relation that at w,/2, C = 74, (=3 dB), and de-
creases at a rate of 20 dB /decade.

When the differential signal goes through *‘coupled
paths,”” then D # 1 and the relation between C and E
depends on the circuit. This is the case for the input stage
of the classical three-op-amp IA (Fig. 4). From [1] we
obtain for this stage that (26) applies, regardless of the
values for resistors R, and R,, for reasonable differential
gains, and without requiring resistor matching. Also,

would have led to very low values for C, as deduced from
(3) and (11c).

If we assume that the op amp’ open loop differential

gain and CMRR both have a first-order low-pass fre-
quency dependence, with respective corner frequencies w;,
and w,, we obtain

l - A]() - A20 s + Wye CMR.R20 - CMRR10 s + Wee
- C Al CMRR»CMRR,,  w,
27

Ac2/2 + 2A4A5 — AnAcr /2

D=1+ 2R,/R,. (30)
Factor E can be obtained from [1]. This gives,
1Ay — Ap + A0/2 — Aca/2 + (AppAq — And)/(1 + 2R, /R) 31
2 Ay + Ay/2 + Ay + '

For op amps, A4, is very high as compared to the common
mode gain, so that we can approximate

Y L N R B
N Ay 1+ 2R/R,

: ! - ! )] . 32)
CMRRos1  CMRRo,;

This means that E will normally be very small, so that the
approximations leading to (10) are acceptable.
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Fig. 5. A complete differential circuit consisting of several cascaded stages.
A complete CMRR analysis is given in the text.

Example:

Fig. 5 shows a differential circuit consisting on five
stages that can be analyzed by applying (10). It includes
mismatched output source impedance and input (stray)
capacitance; two unity-gain noncoupled buffers; a differ-
ential multiplexer; and a discrete-component three-op-amp
IA. All op amps are assumed to be OP-27GP; for each
pair we assume: A;g = 8 X 10°, Ay = 3 X 10° (typical
and minimal values in data sheet), f;; = 10 Hz, f;; = 16
Hz (thus resulting in the typical and minimal gain-band-
width product), CMRR,,4, = 116 dB, CMRR,,, = 94 dB,
fe1 = fea = 3 kHz. The problem is to calculate CMRR7 at
10 kHz.

For the first three stages we have D, = D, = D; = 1.
From (21), '

G
From (27) we obtain

C, = —30 — j1352.

1

-5.2 + j455.

We assume that the fourth stage has the same op-amp mis-
matching, and, therefore, C; = C,. From (15) we obtain

C; = —8.3 + j8891.

From (30), D, = 21. We have assumed for the fifth stage
a CMRR of 80 dB, —90° at 10 kHz. Therefore, Cs =
—j10*

The extension of (10) to the present case, where there
are five stages, gives

1 1 1 !
cMRR, = ¢, Y D,6, t DD,C, T DID.DLC,
L1
D.D,D;D;Cs
111 11

~— o+ + :
Ci G G G DG

By using the previous results, we obtain

1
CMRRy

= —58 X 10™® - j826 x 107°.

B

In practical terms this means that an input common mode
voltage results in an equivalent input error voltage with
the in-phase component attenuated by 85 dB and the out-
of-phase component attenuated by 62 dB.
If stages 2 and 4 were perfect, then the result would be
1

. _ -6 _ -3
CMRR, 25 x 10 Jj2.3 X 1077,

It is a bit surprising that now the result is worse than in
the previous case, but this is a consequence of partial can-
cellations taking place when adding different terms. If we
interchange the op-amp positions in stage 2 and also in
stage 4, then the result is

1 -6 . -3
= -7.6 X — . .
CME, 7.6 X 107 — j3.8 x 10

In any case, we see that the result is far from the 80 dB,
—90° specified for the last stage. The degradation is
mostly due to input stage imbalance, but in other situa-
tions a different stage can be responsible for it.

IV. CoNCLUSION

Equation (10) provides a simple method to calculate the
resulting common mode rejection ratio for three (or more
by simple extension) cascaded differential amplifier
stages. We have shown that for several typical circuits the
assumptions made to obtain such a simplified equation are
acceptable. Also the value for the parameter C for each
of these circuits is given. Some of the resulting formulas
are applied to calculate the total CMRR for the circuit in
Fig. 5, which requires only a few calculations when using
the rule formulated by (10), thus illustrating its useful-
ness.
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