Chapter 3. Amplifiers and Signal Processing

3.1 Ideal OP Amps

- O Op amp
 - High-gain dc differential amplifier
 - Dc power supplies are required
 - Usually used with external negative feedback
- O Assume ideal op amp ⇒ design circuit ⇒ check nonideal characteristics are important ⇒ modify if necessary

Ideal Characteristics

- $A = \infty$ (gain is infinite)
- $v_0 = 0$ when $v_1 = v_2$ (no offset voltage)
- $R_d = \infty$ (input impedance is infinite)
- $R_o = 0$ (output impedance is zero)
- Bandwidth = ∞ (no frequency response limitation) and no phase shift

Two Basic Rules

- <u>Rule 1</u> When the op amp output is in its linear region, the two input terminals are at the same voltage.
- Rule 2 No current flows into either input terminal of the op amp.
- Saturation of output at slightly lower than power supply voltages

3.2 Inverting Amplifiers

O Inverting amplifier and input-output characteristic

- Virtual ground: $v_- = 0$
- Analysis: $v_o = -i R_f = -v_i \frac{R_f}{R_i}$ or $\frac{v_o}{v_i} = -\frac{R_f}{R_i}$
- $R_{in} = R_i$ and $R_{out} = 0$
- O Summing amplifier: $v_o = -R_f \left(\frac{v_{i1}}{R_{i1}} + \frac{v_{i2}}{R_{i2}} \right)$

3.3 Noninverting Amplifiers

O Unity-gain follower or buffer: $v_o = v_i$, $R_{in} = \infty$, and $R_{out} = 0$

- O Noninverting amplifier and input-output characteristic
 - $v_- = v_i$
 - Analysis: $\frac{v_o}{v_i} = \frac{i(R_f + R_i)}{i R_i} = 1 + \frac{R_f}{R_i}$
 - $R_{in} = \infty$ and $R_{out} = 0$

3.4 Differential Amplifiers

One-op-amp differential amplifier

• Analysis:
$$v_5 = \frac{R_4}{R_3 + R_4} v_4$$
, $i_2 = \frac{v_3 - v_5}{R_3} = \frac{v_5 - v_o}{R_4}$, $v_o = \frac{R_4}{R_3} (v_4 - v_3)$

- Common-mode rejection ratio (*CMRR*): $CMRR = \frac{G_d}{G_c}$ or $20 \log \frac{G_d}{G_c}$ dB
 - Differential mode gain, $G_d = \frac{R_4}{R_3}$
 - □ Common model gain, G_c : gain for $v_3 = v_4$
- $R_{in} < \infty$ (could be small) and $R_{out} = 0$

O Three-op-amp differential amplifier (instrumentation amplifier)

• Analysis:
$$v_3 - v_4 = i_1 (2R_2 + R_1)$$
, $v_1 - v_2 = i_1 R_1$, $v_3 - v_4 = \left(1 + 2\frac{R_2}{R_1}\right)(v_1 - v_2)$,

http://ejwoo.com 3 Eung Je Woo

$$v_o = \left(1 + 2\frac{R_2}{R_1}\right) \frac{R_4}{R_3} (v_2 - v_1)$$

- Common-mode rejection ratio (*CMRR*): $CMRR = \frac{G_d}{G_c}$ or $20 \log \frac{G_d}{G_c}$ dB
 - □ Differential mode gain, $G_d = \left(1 + 2\frac{R_2}{R_1}\right) \frac{R_4}{R_3}$
 - □ Common model gain, G_c : gain for $v_1 = v_2$
- $R_{in} = \infty$ and $R_{out} = 0$

3.5 Comparators

O Simple comparator or Schmitt trigger

- $v_i > v_{ref} \implies v_o = -V_{sat}$ and $v_i < v_{ref} \implies v_o = +V_{sat}$
- R minimizes overdriving op amp input.
- Sensitive to noise at input
- v_i and v_{ref} can be interchanged.
- O Comparator with hysteresis
 - Positive feedback with R_2 and $R_3 \Rightarrow$ hysteresis \Rightarrow insensitive to input noise
 - Analysis

$$v_o = +V_{sat} \implies v_+ = \frac{R_3}{R_2 + R_3} V_{sat} \implies v_i \quad \text{must be greater than}$$

$$-v_{ref} + \frac{R_3}{R_2 + R_3} V_{sat} \quad \text{to produce } v_o = -V_{sat}$$

$$v_o = -V_{sat} \implies v_+ = -\frac{R_3}{R_2 + R_3} V_{sat} \implies v_i \text{ must be smaller than }$$

$$-v_{ref} - \frac{R_3}{R_2 + R_3} V_{sat} \text{ to produce } v_o = +V_{sat}$$

• R_3 controls the width of the hysteresis.

3.6 Rectifiers

O Full-wave precision rectifier

• $v_i > 0 \Rightarrow D_2$ and D_3 ON, D_1 and D_4 OFF \Rightarrow upper op amp circuit becomes a noninverting amplifier with gain of 1/x, lower op amp circuit has no effect on output

- $v_i < 0 \Rightarrow D_2$ and D_3 OFF, D_1 and D_4 ON \Rightarrow upper op amp circuit has no effect on output becomes a noninverting amplifier with gain of 1/x, lower op amp circuit becomes an inverting amplifier with gain of -1/x
- Variable gain and high input impedance
- O Half-wave precision rectifier
 - Upper or lower op amp circuit

- One op-amp full-wave rectifier
 - Gain is a function of load ⇒ constant load is required

3.7 Logarithmic Amplifiers

- Without boosting
 - For a transistor, $V_{BE} = 0.060 \log \left(\frac{I_C}{I_S} \right)$ with reverse saturation current

$$I_S = 10^{-13} \,\text{A}$$
 at 27 °C

• Transdiode configuration: $I_C = \frac{v_i}{R_i}$ and $v_o = V_{BE} = 0.060 \log \left(\frac{v_i}{I_S R_i} \right)$

- For 10^{-7} A < I_C < 10^{-2} A, -0.66 V < v_o < -0.36 V
- With boosting: same as noninverting amplifier
- O Temperature compensation for accuracy
- Antilog (exponential) circuit: interchange resistor with transistor
- O Applications
 - Multiplication, division, power
 - Dynamic range compression
 - Linealization

3.8 Integrators

- O Integrator
 - Initial condition setting: S_1 open and S_2 closed $\Rightarrow v_o = v_{ic}$ (inverting amplifier) and $v_c(0) = -v_{ic}$
 - Integration: S_1 closed and S_2 open $\Rightarrow v_c = \frac{1}{C} \int_0^{t_1} i dt v_{ic}$ and $i = \frac{v_i}{R} \Rightarrow v_o = -\frac{1}{RC} \int_0^{t_1} v_i dt + v_{ic}$
 - Hold: S_1 open and S_2 open $\Rightarrow v_o$ is hold
 - Frequency response: $\frac{V_o(j\omega)}{V_i(j\omega)} = -\frac{Z_f}{Z_i} = -\frac{1/j\omega C}{R} = -\frac{1}{j\omega RC} = -\frac{1}{j\omega T}$
 - Drift and saturation problem

Figure 3.10 Bode plot (gain versus frequency) for various filters. Integrator (I); differentiator (D); low pass (LP), 1, 2, 3 section (pole); high pass (HP); bandpass (BP). Corner frequencies $f_{\rm c}$ for high-pass, low-pass, and bandpass filters.

O Charge amplifier

• Virtual ground $\Rightarrow i_{sC} = i_{sR} = 0 \Rightarrow$ long cable can be used

•
$$i_s = K \frac{dx}{dt} \Rightarrow v_o = -\frac{1}{C} \int_0^{t_1} K \frac{dx}{dt} dt = -\frac{Kx}{C}$$

- Drift and saturation problem
- Large feedback resistor
 - Prevents saturation
 - □ Highpass filter with $f_c = \frac{1}{2\pi RC}$ ⇒ no frequency response improvement over voltage amplifier

3.9 Differentiators

O Differentiator

•
$$i = C \frac{dv_i}{dt}$$
 and $v_o = -Ri = -RC \frac{dv_i}{dt}$

• Frequency response:
$$\frac{V_o(j\omega)}{V_i(j\omega)} = -\frac{Z_f}{Z_i} = -\frac{R}{1/j\omega C} = -j\omega RC = -j\omega \tau$$

O Differentiator output: tends to oscillate and noisy due to amplification of high frequency components

3.10 Active Filters

Low-Pass Filter

• Frequency response:

$$\frac{V_o(j\omega)}{V_i(j\omega)} = -\frac{Z_f}{Z_i} = -\frac{\frac{R_f \left/ j\omega C_f}{\left[\left(1/j\omega C_f\right) + R_f\right]}}{R_i} = -\frac{R_f}{\left(1+j\omega R_f C_f\right)R_i} = -\frac{R_f}{R_i} \frac{1}{\left(1+j\omega\tau\right)}$$

- $\ \ \, \Box \ \ \, \text{If} \ \, \omega <<1/\tau \ \, \text{or} \ \, f << f_c \ \, \text{with} \, \, f_c = 1/2\pi R_f C_f \ \, \text{circuit becomes inverting amplifier}$ with gain $-R_f \left/ R_i \right.$
 - \Box If $\omega >> 1/\tau$ or $f >> f_c$, circuit becomes integrator
- Cutoff frequency or corner frequency: $f_c = 1/2\pi R_f C_f$

High-Pass Filter

• Frequency response:

$$\frac{V_o(j\omega)}{V_i(j\omega)} = -\frac{Z_f}{Z_i} = -\frac{R_f}{\left(1/j\omega C_i\right) + R_i} = -\frac{j\omega R_f C_i}{1 + j\omega R_i C_i} = -\frac{R_f}{R_i} \frac{j\omega \tau}{1 + j\omega \tau}$$

- \Box If $\omega << 1/\tau$ or $f << f_c$ with $f_c = 1/2\pi R_i C_i$, circuit becomes differentiator
- \Box If $\omega >> 1/\tau$ or $f >> f_c$, circuit becomes inverting amplifier with gain $-R_f/R_i$
- Cutoff frequency or corner frequency: $f_c = 1/2\pi R_i C_i$

Band-Pass Filter

- Series combination of lowpass and highpass filter
- Two cutoff frequencies or corner frequencies: $f_{c1} = 1/2\pi R_i C_i$ and $f_{c2} = 1/2\pi R_f C_f$

with
$$f_{c2} > f_{c1}$$

- \Box If $f \ll f_{c1}$, circuit becomes differentiator
- \Box If $f >> f_{c2}$, circuit becomes integrator

3.11 Frequency Response

O For a real op amp, bandwidth is not infinite.

Open-Loop Gain

- Op amp is multi-stage dc differential amplifier with high gain
- Stray or junction capacitances in each stage ⇒ gain attenuation (-1 slope on log-log plot and -90° phase shift per stage) ⇒ slope changes with frequency
- Real op amp has a limited open-loop bandwidth
- Possible oscillation (gain greater than 1 at -180° phase shift)

Compensation

- Add a capacitor (external or internal) \Rightarrow fixed slope of -1 and maximal phase shift of -90° , open-loop cutoff frequency of about 40 Hz
- No oscillation

Closed-Loop Gain

- Closed-loop gain is usually much smaller than the maximal open-loop gain of op amp.
- Closed-loop gain is determined by external elements forming negative feedback.

Closed-loop gain can never exceed open-loop gain.

Loop Gain

- Loop gain = (open-loop gain of op amp) (closed-loop gain of op amp circuit)
 - At low frequency: high loop gain, external feedback circuit determines the op amp circuit
 - At high frequency: low loop gain, the op amp circuit follows the op amp openloop gain
 - □ High loop gain ⇒ high accuracy and stability
- Measurement of loop gain
 - Break feedback loop at any point in the loop
 - Inject a signal
 - Measure the gain around the loop
 - Examples
 - · Unity gain follower: loop gain = open-loop gain

• Inverting amplifier with gain of -1: loop gain = (open-loop gain)/2

Gain-Bandwidth Product

- Gain-bandwidth product = (gain at f) × (bandwidth at f)
- Unity-gain-bandwidth product is given in specification of op amp
- Compensated op amp has gain slope of $-1 \Rightarrow$

 $Bandwidth \ of \ op \ amp \ circuit = \frac{Unity - gain - bandwidth \ product \ in \ Hz}{Op \ amp \ circuit \ gain}$

Slew Rate

- For an op amp, internal current source has its I_{max} .
- Change in voltage across the compensation capacitor: $\frac{dv_c}{dt} = \frac{I_{\text{max}}}{C} \Rightarrow \frac{dv_o}{dt}$ is limited

- Slew rate $S_r = \frac{dv_o}{dt}\Big|_{\text{max}}$
- For sinusoidal input, full-power response or maximal frequency for rated output is $f_p = \frac{S_r}{2\pi V_{or}}$ where V_{or} is the rated output voltage.
- Uncompensated op amp is faster ⇒ useful for comparators

Figure 3.13 Op-amp frequency characteristics

early op amps (such as the 709) were uncompensated, had a gain greater than 1 when the phase shift was equal to -180°, and therefore oscillated unless compensation was added externally. A popular op amp, the 411, is compensated internally, so for a gain greater than 1, the phase shift is limited to -90°. When feedback resistors are added to build an amplifier circuit, the loop gain on this log-log plot is the difference between the opamp gain and the amplifiercircuit gain.

3.12 Offset Voltage

- O For a real op amp, $v_2 v_1 \neq 0$ to produce $v_0 = 0$.
- O Offset voltage = $v_2 v_1 \neq 0$ must be considered for small input signals.

Nulling

- Add an external nulling pot.
- Adjust the pot \Rightarrow increase I_E at one input and decrease at the other $\Rightarrow v_2 v_1 = 0$

Drift

• Temperature change (environment or self-heating) \Rightarrow change in offset voltage, $(v_2 - v_1)$

- Specification
 - Maximal offset voltage change per °C such as 0.1 μV/°C
 - □ Maximal offset voltage over a given temperature range such as –25 to +85 °C

Noise

- Semiconductor junctions ⇒ noise voltage sources and noise current sources
- For low source impedance (R_1 and R_2 small), v_n dominates.
- Characteristics
 - Random
 - □ At low frequency \Rightarrow amplitude $\propto 1/f$ (flicker noise)
 - □ At midfrequency \Rightarrow smaller amplitude expressed in rms units of V·Hz^{-1/2}
 - Some op amps exhibit bursts of noise (popcorn noise).

3.13 Bias Current

- O Base or gate current to keep transistors turned on \Rightarrow bias current $\neq 0$
- O Bias current flows through feedback resistors \Rightarrow smaller resistors are desirable (about 10 kΩ)
- O Caution: current flowing through feedback resistors plus current flowing through loads must be smaller than op amp output current rating ⇒ too small resistors cannot be used

Differential Bias Current

- Difference between two input bias currents << each bias current
- Compensation resistor minimizes the effect of bias currents

Drift

- Change of bias currents due to temperature
- Compensation resistor also minimizes the effect of bias current drift

Noise

• Noise currents flow through external equivalent resistors.

Figure 3.14 Noise sources in an op amp The noise-voltage source v_n is in series with the input and cannot be reduced. The noise added by the noise-current sources In can be minimized by using small external resistances.

- Total rms noise voltage is $v_t \cong \left[\left\{ v_n^2 + \left(i_n R_1 \right)^2 + \left(i_n R_2 \right)^2 + 4kTR_1 + 4kTR_2 \right\} \times BW \right]^{1/2}$
 - \neg R_1 and R_2 : equivalent source resistances
 - v_n : mean value of rms noise voltage in $V \cdot Hz^{-1/2}$ over a frequency range
 - \neg i_n : mean value of rms noise voltage in $A \cdot Hz^{-1/2}$ over a frequency range

- □ k: Boltzmann's constant
- \Box T: temperature, K
- □ *BW*: noise bandwidth, Hz
- Types of op amp
 - □ Small (10 kΩ) source resistances \Rightarrow BJT input op amp produces smaller noise
 - □ Large source resistances ⇒ FET input op amp produces smaller noise due to smaller noise current
- Low noise ac amplifier design (noninverting amplifier) by impedance matching
 - \Box Characteristic noise resistance is $R_n = v_n/i_n$
 - \square Set $R_n = R_2$ using a transformer with turns ratio 1:N where $N = (R_n/R_2)^{1/2}$

3.14 Input and Output Resistance

Input Resistance

- Op amp differential input resistance, R_d : $T\Omega$ for FET, $M\Omega$ for BJT
- Amplifier-circuit input resistance, R_{ai}
 - Unity-gain follower: $\Delta v_o = A\Delta v_d = A(\Delta v_i \Delta v_o) \Rightarrow \Delta v_o = \frac{A\Delta v_i}{A+1}$ $\Delta i_i = \frac{\Delta v_d}{R_d} = \frac{\Delta v_i \Delta v_o}{R_d} = \frac{\Delta v_i}{(A+1)R_d}$

$$R_{ai} = \frac{\Delta v_i}{\Delta i_i} = (A+1)R_d \approx AR_d$$
, R_{ai} could be $> T\Omega$

- Poninverting amplifiers: $R_{ai} = R_d \times (\text{loop gain})$, very high, limited by surface leakage current
- □ Inverting amplifier: $R_{ai} = \frac{\Delta v_i}{\Delta i_i} = R_i$, usually small

Output Resistance

- Op amp output resistance, $R_o \approx 40 \Omega$
- Amplifier-circuit output resistance, R_{ao} for unity-gain follower with resistive load
 - □ Resistive load, $R_L \Rightarrow$ change in output current, Δi_o

$$-\Delta v_d = \Delta v_o = A\Delta v_d + \Delta i_o R_o = -A\Delta v_o + \Delta i_o R_o \Rightarrow (A+1)\Delta v_o = \Delta i_o R_o$$

$$R_{ao} = \frac{\Delta v_o}{\Delta i_o} = \frac{R_o}{A+1} \approx \frac{R_o}{A}, \ R_{ao} \text{ could be} < 10-3 \ \Omega$$

- All noninverting and inverting amplifiers: $R_{ao} = R_d / (\text{loop gain})$, very small, load resistance is limited by maximal output current of op amp (too small load resistance \Rightarrow op amp saturates internally)
- R_{ao} for unity-gain follower with capacitive load
 - □ Capacitive load, $C_L \Rightarrow i_o = C_L \frac{dv_o}{dt}$, limited by maximal output current of op amp and slew rate
 - $R_o C_L \Rightarrow$ lowpass filter \Rightarrow additional phase shift around the loop \Rightarrow possible oscillation
 - \Box To prevent oscillation, add a small resistor between v_o and C_L .
- Current booster for large output current: op amp + high-power transistors

3.15 Phase-Sensitive Demodulators

O Consider the amplitude-modulated (AM) signal, $v_{AM}(t) = x(t) \cos \omega_c t$

• Signal: x(t) with maximal frequency much less than $f_c = \omega_c/2\pi$

• Carrier: $\cos \omega_c t$ with $\omega_c = 2\pi f_c$

- O Detection (or demodulation) of the sign
 - Envelope detection
 - Rectification and lowpass filtering
 - Noise at various frequencies cannot be rejected
 - Tuned amplifier or bandpass filter can remove some noise.
 - Phase-sensitive demodulation or synchronous detection
 - Multiplication or switching and lowpass filtering
 - Excellent noise rejection
- O Phase-sensitive demodulation for $x(t) = \cos \omega_s t$
 - Assume the following,

$$v_{AM}(t) = \cos \omega_s t \cos(\omega_c t + \theta)$$

$$v'(t)$$

$$v_c(t) = \cos \omega_c t$$

$$v'(t) = v_{AM}(t) \cos \omega_c t$$

$$= x(t) \cos(\omega_c t + \theta) \cos \omega_c t$$

$$= x(t) \frac{1}{2} \{\cos(2\omega_c t + \theta) + \cos \theta\}$$

- $y(t) = \frac{1}{2}\cos\theta x(t)$
 - $\Box \text{ If } \theta \neq \frac{\pi}{2}(2n+1) \text{ with } n = 0, 1, 2, \dots \text{ and } \theta \text{ is constant, then we can detect } x(t)$

from $v_{AM}(t) = x(t) \cos \omega_c t$.

□ Noise not synchronized with $v_c(t) = \cos \omega_c t$ is rejected.

Figure 3.17 A ring demodulator This phase-sensitive detector produces a full-wave-rectified output v_0 that is positive when the input voltage v_1 is in phase with the carrier voltage v_c and negative when v_i is 180° out of phase with v_c .

O Circuits: analog multiplier, balanced modulator/demodulator, ring demodulator

O Example

- (a) $x(t) = \cos(2\pi t) + 3$
- (b) $v_{AM}(t) = \{\cos(2\pi t) + 3\}\cos(2\pi \times 30t)$
- (c) $v'(t) = \{\cos(2\pi t) + 3\}\cos^2(2\pi \times 30t)$
- (e) $y(t) = \frac{1}{2} \{\cos(2\pi t) + 3\}$

3.16 Microcomputers in Medical Instrumentation

