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Optimization 

 

- We study parameter optimization algorithms. 

 

(1) Generic problem definition 

- Basic ingredients: M, U, G 

u  U nR y Rr

qRl

M

 

- Model (M): (parameterized) mathematical representation of "plant" 

- ( )My u  (deterministic optimization) or ( , )My u q  (stochastic optimization with 

q random vector) 

- Admissible decisions (U): admissible range of values of parameters 

 

M
u  U nR y Rr

qRl

J
J ( )u

G
 

- Goal (G): a performance index or objective (function) expressed as a function of u  U 

 Rn 

- Performance index, : nJ R R  or :J U R  

- Generic optimization problem is 

min ( )
U

J
u

u . 

  (1) An element * Uu  which achieves the min above is optimal and * *( )J J u  

is the optimal or minimal value. We say * arg min ( )
U

J



u

u u . 

  (2) * Uu is not necessarily unique. 

  (3) * Uu may not exist. If we are not sure about its existence, we write 

* inf ( )
U

J J



u

u  or * sup ( )
U

J J



u

u . 

  (4)  min ( ) max ( )
U

U

J J




  
u

u

u u  and  max ( ) min ( )
U

U

J J




  
u

u

u u . 
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(2) Existence of optimal elements 

- (Compactness theorem) Suppose U  Rn is nonempty and compact and :J U R  is 

continuous. Then an optimal element * Uu  exists, i.e., * *( ) min ( )
U

J J J


 
u

u u . 

- Without compactness we need coercivity or convexity for existence of the optimal 

elements. 

- Suppose a function : nJ R R  is continuous. J is coercive if lim ( )J



u

u , i.e., J 

blows up uniformly in every direction. 

- (Coercivity theorem) Suppose U  Rn is nonempty and closed and :J U R   is 

continuous and coercive. Then an optimal element * Uu   exists, i.e., 

* *( ) min ( )
U

J J J


 
u

u u . 

 

(3) Uniqueness of the optimum 

- (Convex set) A set U  Rn is convex if  

,  and [0,1], (1 )U U        u v u v . 

- (Convex function) A function : nJ R R  is (strictly, with <) convex if  

 ,  and [0,1], (1 ) (1 ) ( ) ( )U J J J            u v u v u v . 

- J is concave if -J is convex. 

- (Hessian lemma) Suppose J is continuously differentiable on an open convex set U. 

Then, J(u) is convex iff the Hessian matrix 2 ( )J u  is positive semidefinite at each 

point Uu  where 

2 2 2

2

1 1 2 1

2 2 2

2 2

2 1 2 2

2 2 2

2

1 2

( ) :

n

n

n n n

J J J

u u u u u

J J J

J u u u u u

J J J

u u u u u

   
 
    

 
   
 

       
 
 
   

       

u . 

- If J is convex, the optimum is unique. 

 

(4) Local minimum 
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- Suppose U  Rn is open and :J U R . A point * Uu  is a strong local minimum of 

J over U if *( ) ( )J Ju u  for all Uu  in some (open) neighbor of *
u . 

- A weak local minimum is defined with . 

- (Theorem) Suppose U  Rn is open and :J U R  and * Uu . *
u  is a strong local 

minimum if *( ) 0J u  and 2 ( ) 0J u  (positive definite), where the gradient 

*

1 2

( )

T

n

J J J
J

u u u

   
   

   
u . 

 

(5) Steepest descent algorithm 

- Let : nJ R R   is differentiable and nv R   is given with v  0. The directional 

derivative at a given point nu R  in the direction of v is 

  ˆ( )
TdJ

J
d

 
u

u v
v

 where ˆ 
v

v
v

. 

- Note that J is decreasing in the negative gradient direction since with ( )J v u , 

 
( )

( ) ( ) 0
( )

TdJ J
J J

d J


      

u

u
u u

v u
. 

- 
( )

( )

J

J


 



u
v

u
 is the direction of maximal decrease. 

- (Steepest descent algorithm) 

  (1) Initial guess, 0
u . 

  (2) Iterate with 
1 ( )

( )

k
k k

k

J
h

J

 
 



u
u u

u
 for k = 1, 2, ... with h > 0 being the algorithm 

step size. 

  (3) Stopping criterions may include  

    smallness of 1( ) ( )k kJ J u u , 

    smallness of 1k k u u , 

    smallness of ( )kJ u , 

    condition on 2 ( )kJ u , 

    some criteria for N consecutive times, 

    and combinations of above. 
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- Step size 

  (1) Fixed step size 

  (2) Dynamic step size by line search (uniform search, sequential search, 

dichotomous search, golden section method, Fibonacci search) 

- Criticism of steepest descent algorithm 

  (1) Myopic 

  (2) Possible oscillation 

  (3) May require multiple restarts to avoid a local minimum 

  (4) Slow convergence 

- Good performance when 0
u  is far away from the optimum. 

 

(6) Generalized Newton-Raphson 

- Pretend J is quadratic near k
u  and 1k k  u u u . Then,  

  21
( ) ( ) ( ) ( ) h.o.t.

2

T Tk k k kJ J J J            u u u u u u u u  

 where h.o.t. is 0 from the quadratic assumption. Now we optimize w.r.t. u , i.e., let 

2( )
( ) ( ) =0

k
k kJ

J J
  

  


u u
u u u

u
 

 and 

1
2 ( ) ( )k kJ J



      u u u . 

- (Generalized Newton algorithm) 

  (1) Initial guess, 0
u . 

  (2) Iterate with 
1

1 2 ( ) ( )k k k kJ J


      u u u u  for k = 1, 2, ...  

  (3) Check the conditioning of the matrix 
1

2 ( )kJ


  u . 

  (4) Stopping criterions 

- Good performance near the optimum but computationally expensive 

 

(7) Gauss-Newton algorithm 

- Computation of Hessian is often too expensive or impossible.  

- Approximate Hessian as 2 ( ) ( ) ( )
T

k k kJ J J         u u u . 

- In order to handle the ill-conditioning problem of ( ) ( )
T

k kJ J   u u , use Levenberg-
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Marquardt method where  2 ( ) ( ) ( )
T

k k kJ J J            u u u I H   for some 

positive constant . 

- (Gauss-Newton algorithm) 

  (1) Initial guess, 0
u . 

  (2) Iterate with 1 1 ( )k k kJ   u u H u  for k = 1, 2, ...  

  (3) Check the conditioning of the matrix  
1

( ) ( )
T

k kJ J


   u u   and adjust  if 

necessary. 

  (4) Stopping criterions 

 

(8) Conjugate direction (gradient) algorithm 

- Let A be an n n   positive definite symmetric matrix. A pair of nonzero vectors 

, nx y R  are mutually conjugate w.r.t. A if 0T x Ay .  

- Orthogonality is a special case with A = I. 

- Eigenvectors of A are mutually conjugate. 

- If  
1

0

n
k

k




v  are mutually conjugate, then they are linearly independent. 

- Conjugate direction was found to be better than the steepest direction in many cases. 

There are many possible conjugate directions. 

- (Conjugate direction algorithm in general) 

  (1) Initial guess, 0
u . 

  (2) Iterate with 
1

k
k k

k k
h  

v
u u

v
 for k = 1, 2, ... with hk > 0 being the algorithm 

step size. 

  (3) Stopping criterions 

- (Conjugate direction algorithm - Fletcher Reeves) 

  (1) Initial guess, 0
u  and 0 0( )J v u . 

  (2) Iterate with 
1

k
k k

k k
h  

v
u u

v
 for k = 1, 2, ... with hk > 0 being the algorithm 

step size. Compute 

2
1

1 1

2

( )
( )

( )

k

k k k

k

J
J

J



 


  


u
v u v

u
. 

  (3) Stopping criterions 
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- In conjugate direction algorithm, we have the following condition. 

1( )k kJ v u  or   0
k

T
k k

k k
J h
 
   
 
 

v
v u

v
. 

 

 

 


