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Optimization

- We study parameter optimization algorithms.
(1) Generic problem definition

- Basic ingredients: M, U, G

ueU cR" y eR'
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- Model (M): (parameterized) mathematical representation of "plant”

- y=M(u) (deterministic optimization) or y =M (u,q) (stochastic optimization with
q random vector)

- Admissible decisions (U): admissible range of values of parameters

ueUcR" y eR' J(u)
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- Goal (G): a performance index or objective (function) expressed as a function of u € U
cR"
- Performance index, J:R" >R or J:U >R

- Generic optimization problem is

min J(u).

ueU
(1) An element u” €U which achieves the min above is optimal and J™ =J(u’)

is the optimal or minimal value. We say u” e arg min J(u).

ueU

(2) u” €U is not necessarily unique.

(3) u” €U may not exist. If we are not sure about its existence, we write

J*=in£J(u) or J =supJ(u).

ueU

4) rpeiUnJ(u):—max{—J(u)} and TixJ(u)z—min{—J(u)}.

ueU ueU



BNET7049 Statistical Bio-signal & Image Processing Kyung Hee Univ.

(2) Existence of optimal elements

- (Compactness theorem) Suppose U < R" is nonempty and compact and J:U >R is

continuous. Then an optimal element u” €U exists,ie., J =J(U)= miUn J(u).
ue

- Without compactness we need coercivity or convexity for existence of the optimal

elements.

- Suppose a function J:R" — R is continuous. J is coercive if lim J(u) -+, i.e.,J

Juf->

blows up uniformly in every direction.

- (Coercivity theorem) Suppose U < R" is nonempty and closed and J:U —R is

continuous and coercive. Then an optimal element U eU exists, i.e.,

J*:J(u*):miLJnJ(u).

(3) Uniqueness of the optimum

- (Convex set) A set U < R" is convex if
vu,veU and VA €[0,1], @—A)u+AveU.

- (Convex function) A function J:R" — R is (strictly, with <) convex if

vu,veU and VA e[0,1], J[A-A)u+Av]< (1-2)I(u)+ A (V).

- J is concave if -J 1s convex.

- (Hessian lemma) Suppose J is continuously differentiable on an open convex set U.
Then, J(u) is convex iff the Hessian matrix V?J(u) is positive semidefinite at each
point ueU where

B 0%J
ou>  oudu,  oudu
02J 02J 0J

V2(u)=|du,0u,  ouZ  oudu,
02J 02J 0J

| du,0u,  du,ou, 8_u§ |

- If J is convex, the optimum is unique.

(4) Local minimum
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- Suppose Uc R"isopenand J:U - R .Apoint u” eU is astrong local minimum of
Jover Uif J(u)>J(u") forall ueU in some (open) neighbor of u”.

- A weak local minimum is defined with >.

- (Theorem) Suppose U < R"isopenand J:U -R and u eU. u” is a strong local
minimum if VJ(U)=0 and V?J(u)>0 (positive definite), where the gradient

aa  al
ou, ou, ou |

V() :{

(5) Steepest descent algorithm
- Let J:R" >R is differentiable and veR" is given with v # 0. The directional

derivative at a given point U eR" in the direction of v is

dJ

=[VJ(U)]T\7 where ¥=—"_.

Vis vl

- Note that J is decreasing in the negative gradient direction since with v=-VJ(u),

| rVIU)
S, = RO S =)o

u

_ VJ(u)
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- (Steepest descent algorithm)

(1) Initial guess, u°.

is the direction of maximal decrease.

k
(2) Iterate with u** =u*—h L“k) for k=1, 2, ... with &> 0 being the algorithm
[vaw)
step size.
(3) Stopping criterions may include

3

smallness of ‘J (U -J (")

k+1 k
—u

smallness of Hu

3

3

smallness of HVJ (u*)

condition on V?J(u“),
some criteria for N consecutive times,

and combinations of above.
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- Step size
(1) Fixed step size
(2) Dynamic step size by line search (uniform search, sequential search,
dichotomous search, golden section method, Fibonacci search)
- Criticism of steepest descent algorithm
(1) Myopic
(2) Possible oscillation
(3) May require multiple restarts to avoid a local minimum
(4) Slow convergence

- Good performance when u° is far away from the optimum.

(6) Generalized Newton-Raphson
- Pretend J is quadratic near u* and u*"' =u*+Au. Then,

J(U* +Au) =J (") + [VJ (uk)]T Au +%(Au)T V2J(U*)Au+h.o.t.
where h.o.t. is 0 from the quadratic assumption. Now we optimize w.r.t. Au, i.e., let
k
AU +AY) v, (U +Vv2J(Uu*)Au=0
OAU
and
Au=-[ V23] VI).

- (Generalized Newton algorithm)

(1) Initial guess, u°.

(2) Iterate with u“*=u* -[V2I(U")] VI(U") fork=1,2, ..

(3) Check the conditioning of the matrix [VZJ (uk)}_l.

(4) Stopping criterions
- Good performance near the optimum but computationally expensive

(7) Gauss-Newton algorithm

- Computation of Hessian is often too expensive or impossible.

- Approximate Hessian as [VZJ (uk)] ~ [VJ (u")]T VI(U").

- In order to handle the ill-conditioning problem of [VJ (u")]T VJ(u¥), use Levenberg-
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Marquardt method where [VZJ (uk)] ~ {[VJ (uk)]T VI(u) + §I} =H for some

positive constant o.

- (Gauss-Newton algorithm)

(1) Initial guess, u°.

(2) Iterate with u** =u*—H?*VJ(@U") fork=1,2, ...
-1
(3) Check the conditioning of the matrix {[VJ (uk)]T vJ (uk)} and adjust o if

necessary.

(4) Stopping criterions

(8) Conjugate direction (gradient) algorithm
- Let A be an nxn positive definite symmetric matrix. A pair of nonzero vectors
X,y €R" are mutually conjugate w.rt. Aif x"'Ay=0.

- Orthogonality is a special case with A =1.
- Eigenvectors of A are mutually conjugate.

- If {Vk }: are mutually conjugate, then they are linearly independent.

- Conjugate direction was found to be better than the steepest direction in many cases.
There are many possible conjugate directions.
- (Conjugate direction algorithm in general)

(1) Initial guess, u°.

(2) Iterate with u** =u*+h, m for k=1, 2, ... with h; > 0 being the algorithm

step size.
(3) Stopping criterions
- (Conjugate direction algorithm - Fletcher Reeves)
(1) Initial guess, u® and v°=-VJ(U°).

K \'

(2) Iterate with u** =u*+h, m for k=1, 2, ... with &t > 0 being the algorithm

HV‘] (uk+1) ‘2 y
[vawf

step size. Compute V<" =-VJ(U*") + )

(3) Stopping criterions
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- In conjugate direction algorithm, we have the following condition.

v LVIU*?) or (v")T VJ| u*+h, =0.

Vk
V]



