Linear Functions

• System of linear equations

- Consider a function or mapping, y = Ax, i.e.,

$$y_{1} = a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n}$$

$$y_{2} = a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n}$$

$$\vdots$$

$$y_{m} = a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n}$$

where
$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} \in \mathbf{R}^m$$
, $\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \in \mathbf{R}^{m \times n}$, and $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbf{R}^n$

- (1) \mathbf{y} is measurement or observation; \mathbf{x} is unknown to be determined
- (2) \mathbf{x} is input; \mathbf{y} is output

• Linear functions

- A function or mapping $f: \mathbf{R}^n \to \mathbf{R}^m$ is <u>linear</u> if
 - (1) $f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y}), \forall \mathbf{x}, \mathbf{y} \in \mathbf{R}^n$
 - (2) $f(\alpha \mathbf{x}) = \alpha f(\mathbf{x}), \forall \mathbf{x} \in \mathbf{R}^n \forall \alpha \in \mathbf{R}$
- Any linear function $f: \mathbb{R}^n \to \mathbb{R}^m$ can be written as $f(\mathbf{x}) = \mathbf{A}\mathbf{x}$ for some $\mathbf{A} \in \mathbb{R}^{m \times n}$
- Interpretation of $y_i = \sum_{i=1}^n a_{ij} x_j$
 - (1) a_{ij} is a gain from jth input (x_i) to ith output (y_i)
 - (2) *i*th row of $\mathbf{A} \Leftrightarrow i$ th output
 - (3) *j*th column of $\mathbf{A} \Leftrightarrow j$ th input
 - (4) $a_{ii} = 0 \iff i$ th output (y_i) does not depend on jth input (x_i)
 - (5) a_{ip} dominates all a_{ij} for $j \neq p \iff y_i$ depends mainly on x_p
 - (6) a_{qi} dominates all a_{ij} for $i \neq q \iff x_q$ affects mainly y_i
 - (7) **A** is diagonal, i.e., $a_{ij} = 0$ for $i \neq j \iff y_i$ depends only on x_i

- (8) Sparsity pattern of A determines input-output interactions
- Interpretation of y = Ax
- Sum (linear combination) of columns. Write \mathbf{A} as $\mathbf{A} = [\mathbf{a}_1 \mathbf{a}_2 \cdots \mathbf{a}_n]$ where

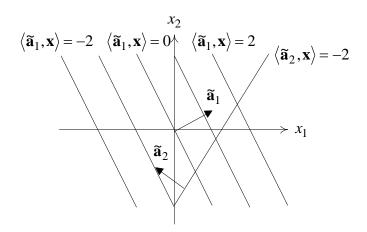
$$\mathbf{a}_j = \begin{bmatrix} a_{1j} a_{2j} \cdots a_{mj} \end{bmatrix}^T \in \mathbf{R}^m$$
. Then,

$$\mathbf{y} = x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \dots + x_n \mathbf{a}_n = \sum_{j=1}^n x_j \mathbf{a}_j$$

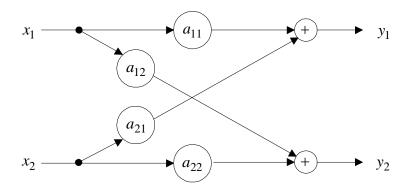
- Inner product with rows. Write A as

$$\mathbf{A} = \begin{bmatrix} \tilde{\mathbf{a}}_{1}^{T} \\ \tilde{\mathbf{a}}_{2}^{T} \\ \vdots \\ \tilde{\mathbf{a}}_{m}^{T} \end{bmatrix} \text{ where } \tilde{\mathbf{a}}_{i} = \begin{bmatrix} a_{i1} \\ a_{i2} \\ \vdots \\ a_{in} \end{bmatrix} \in \mathbf{R}^{n} \text{ . Then } \mathbf{y} = \begin{bmatrix} \tilde{\mathbf{a}}_{1}^{T} \mathbf{x} \\ \tilde{\mathbf{a}}_{2}^{T} \mathbf{x} \\ \vdots \\ \tilde{\mathbf{a}}_{m}^{T} \mathbf{x} \end{bmatrix} \text{ or } y_{i} = \langle \tilde{\mathbf{a}}_{i}, \mathbf{x} \rangle .$$

- \mathbf{x} is on intersection of all hyperplanes $\tilde{\mathbf{a}}_{i}^{T}\mathbf{x} = y_{i}$ for i = 1, 2, ..., m.

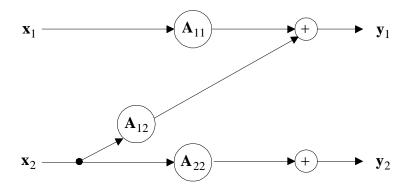


- Block diagram or signal flow graph
 - (1) For a system, $\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$



(2) For a system,
$$\begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{0} & \mathbf{A}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}$$
, we can partition as $\mathbf{y}_1 = \mathbf{A}_{11}\mathbf{x}_1 + \mathbf{A}_{12}\mathbf{x}_2$

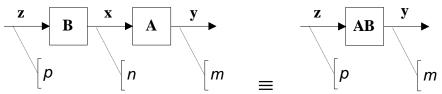
and $\mathbf{y}_2 = \mathbf{A}_{22}\mathbf{x}_2$



- Composite functions or systems y = ABz
- Matrix multiplication, $C = AB \in \mathbb{R}^{m \times p}$ where $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$. Then,

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} = \tilde{\mathbf{a}}_{i}^{T} \mathbf{b}_{j} = \langle \tilde{\mathbf{a}}_{i}, \mathbf{b}_{j} \rangle, \quad \mathbf{C} = \mathbf{A} \mathbf{B} = \begin{bmatrix} \mathbf{A} \mathbf{b}_{1} \cdots \mathbf{A} \mathbf{b}_{p} \end{bmatrix}, \text{ and } \mathbf{C} = \mathbf{A} \mathbf{B} = \begin{bmatrix} \tilde{\mathbf{a}}_{1}^{T} \mathbf{B} \\ \vdots \\ \tilde{\mathbf{a}}_{m}^{T} \mathbf{B} \end{bmatrix}$$

- Composite interpretation.



- Many engineering problems can be modelled as y = Ax
- Estimation or inversion problems

- (1) Model
 - (a) y_i is *i*th measurement or sensor reading
 - (b) x_i is jth parameter to be estimated
 - (c) a_{ii} is sensitivity of *i*th sensor to *j*th parameter
- (2) Problems
 - (a) Given y, find x
 - (b) Find all x's that can result in y
- (c) If there is no x such that y = Ax, find the best \hat{x} such that $y \approx A\hat{x} \Rightarrow$ least square error solution and minimum norm solution
- Control or design problems
 - (1) Model
 - (a) x is design parameter or inputs or controls
 - (b) y is results or outputs or states
 - (c) A describes how input affects output
 - (2) Problems
 - (a) Given a desirable y^* (specifications), find x so that $y = y^*$
 - (b) Find all x's that can result in $y = y^*$
 - (c) Among all x's in (b), find a small or efficient one
- Signal processing problems
 - (1) Model
 - (a) y_i is output signal at time i
 - (b) x_i is input signal at time j
 - (2) Problems
 - (a) Given a desirable y^* , find A so that $Ax = y^*$
 - (b) Given A, find B such that By = x or $By \approx x$

Linear Algebra

- Vector space and subspace (see Vector Space)
- $V_1 = \mathbf{R}^n$, subspace of \mathbf{R}^n
- $V_2 = \{\mathbf{0}\}$ where $\mathbf{0} \in \mathbf{R}^n$, subspace of \mathbf{R}^n
- $V_3 = \text{span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ where $\mathbf{v}_i \in \mathbf{R}^n$, subspace of \mathbf{R}^n
- $V_4 = \{ \mathbf{x} : \mathbf{R}_+ \to \mathbf{R}^n | \mathbf{x} \text{ is differentiable} \}$ where $(\mathbf{x} + \mathbf{z})(t) = \mathbf{x}(t) + \mathbf{z}(t)$,

 $(\alpha \mathbf{x})(t) = \alpha \mathbf{x}(t)$ (a point in V_4 is a trajectory in \mathbf{R}^n)

- $V_5 = \{ \mathbf{x} \in V_4 : \dot{\mathbf{x}} = \mathbf{A}\mathbf{x} \}$, subspace of V_4
- Linear independence, basis, dimension (see Vector Space)
- <u>Linearly independent</u> vs. <u>linearly dependent</u>
- $V = \operatorname{span} \{ \mathbf{v}_i \}_{i=1}^n$ and $\{ \mathbf{v}_i \}_{i=1}^n$ are linearly independent
 - (a) $\{\mathbf{v}_i\}_{i=1}^n$ is a <u>basis</u> and <u>dimension</u> of V is n.
 - (b) $\forall \mathbf{x} \in V, \mathbf{x} = \sum_{i=1}^{n} c_i \mathbf{v}_i, \{c_i\}_{i=1}^{n}$ is unique
 - (c) Basis is not unique, i.e., V may have infinite number of bases
 - (d) All bases have the same number of vectors (equal to dimension)
 - (e) Any linearly independent set of vectors in V can be extended to a basis
 - (f) Any spanning set of V can be reduced to a basis
- Real matrix and vector
- $\mathbf{R}^{m \times n}$ denotes the vector space of all $m \times n$ <u>real matrices</u>:

$$\mathbf{A} \in \mathbf{R}^{m \times n} \iff \mathbf{A} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}.$$

- \mathbf{R}^m (i.e., $\mathbf{R}^{m\times 1}$) denotes the vector space of all $m\times 1$ <u>real column vectors</u>.

- For $\mathbf{x} \in \mathbf{R}^m$ and $\mathbf{y} \in \mathbf{R}^n$, $\mathbf{x}\mathbf{y}^T \in \mathbf{R}^{m \times n}$ is the <u>outer product</u>.
- For $\mathbf{x} \in \mathbf{R}^n$ and $\mathbf{y} \in \mathbf{R}^n$, $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{y} \in \mathbf{R}^{1 \times 1}$ is the <u>inner product</u>.

• Complex matrices

- For $\mathbf{A} \in \mathbf{C}^{m \times n}$, then $\mathbf{A}^H = \left[\overline{a_{ji}} \right]$.
- For $\mathbf{x} \in \mathbf{C}^n$ and $\mathbf{y} \in \mathbf{C}^n$, $\mathbf{x}^H \mathbf{y} = \sum_{i=1}^n \overline{x_i} y_i = \overline{\mathbf{y}^H \mathbf{x}}$ is the <u>inner product</u>.
- $\mathbf{A} \in \mathbf{C}^{n \times n}$ is <u>unitary</u> if $\mathbf{A}^H \mathbf{A} = \mathbf{I}_n$, <u>Hermitian</u> if $\mathbf{A}^H = \mathbf{A}$, and <u>positive definite</u> if $\mathbf{x}^H \mathbf{A} \mathbf{x} > 0$, $\forall \mathbf{x} \in \mathbf{C}^n$ and $\mathbf{x} \neq \mathbf{0}$.
- Vector norm (Euclidean norm, see normed vector space)

- For
$$\mathbf{x} \in \mathbf{R}^n$$
, $\|\mathbf{x}\| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = \sqrt{\mathbf{x}^T \mathbf{x}}$

-
$$\operatorname{dist}(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|$$

• Inner product (see Inner Product Space)

- For
$$\mathbf{x}, \mathbf{y} \in \mathbf{C}^n$$
, $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^H \mathbf{y} = x_1^* y_1 + \dots + x_n^* y_n = \sum_{i=1}^n x_i^* y_i$

- For
$$\mathbf{x}, \mathbf{y} \in \mathbf{R}^n$$
, $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{y} = x_1 y_1 + \dots + x_n y_n = \sum_{i=1}^n x_i y_i$

- Row vector \mathbf{x}^T represents a linear functional: $\mathbf{R}^n \to \mathbf{R}$
- $\{\mathbf{x}: \mathbf{x}^T \mathbf{y} \le 0\}$ defines a <u>halfspace</u> with boundary passing $\mathbf{0}$ and outward normal vector \mathbf{y}

• Null space of a matrix

- For a matrix $\mathbf{A} \in \mathbf{R}^{m \times n}$, the <u>null space</u> of \mathbf{A} is

$$N(\mathbf{A}) = \left\{ \mathbf{x} \in \mathbf{R}^n : \mathbf{A}\mathbf{x} = 0 \right\}.$$

- (1) $N(\mathbf{A})$ is set of vectors mapped to zero by $\mathbf{y} = \mathbf{A}\mathbf{x}$
- (2) $N(\mathbf{A})$ is set of vectors orthogonal to all rows of \mathbf{A} ; $y_i = \langle \tilde{\mathbf{a}}_i, \mathbf{x} \rangle = 0$ for all i

- If $N(\mathbf{A}) = \{\mathbf{0}\}$,
 - (1) y = Ax uniquely determines x (the linear transformation does not loose information, i.e., can be inversed)
 - (2) Since $\mathbf{y} = \sum_{i=1}^{n} x_i \mathbf{a}_i$ and $\{x_i\}_{i=1}^{n}$ is unique, $\{\mathbf{a}_i\}_{i=1}^{n}$ is a basis
 - (3) **A** has a left inverse, i.e., $\exists \mathbf{B} \in \mathbf{R}^{n \times m}$ s.t. $\mathbf{B}\mathbf{A} = \mathbf{I}_n$
 - (4) $\det(\mathbf{A}^T\mathbf{A}) \neq 0$
- Meanings of $z \in N(A)$
 - (1) Ambiguity in x. Given y = Ax and $z \in N(A)$,
 - (a) $y = A(x+z) \implies z$ is undetectable
 - (b) If $\mathbf{y} = \mathbf{A}\hat{\mathbf{x}}$, then $\hat{\mathbf{x}} = \mathbf{x} + \mathbf{z} \implies \mathbf{x}$ and $\hat{\mathbf{x}}$ are indistinguishable
 - (2) Freedom of input choice. Given y = Ax and $z \in N(A)$
 - (a) $0 = Az \implies z$ is input with no result
 - (b) $\hat{\mathbf{x}} = \mathbf{x} + \mathbf{z}$ provides different input choice for the same result

• Range of a matrix

- For a matrix $\mathbf{A} \in \mathbf{R}^{m \times n}$, the <u>range</u> of \mathbf{A} is

$$R(\mathbf{A}) = \{ \mathbf{y} \in \mathbf{R}^m : \mathbf{y} = \mathbf{A}\mathbf{x} \text{ for some } \mathbf{x} \in \mathbf{R}^n \} = \operatorname{span} \{ \mathbf{a}_i \}_{i=1}^n$$

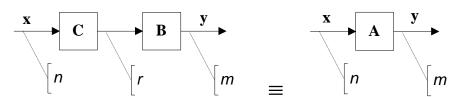
- **A** is called <u>onto</u> if $R(\mathbf{A}) = \mathbf{R}^m$
 - (1) span $\left\{\mathbf{a}_{i}\right\}_{i=1}^{n} = \mathbf{R}^{m}$ and $n \ge m$
 - (2) y = Ax can be solved for x
 - (3) **A** has a right inverse, i.e., $\exists \mathbf{B} \in \mathbf{R}^{n \times m}$ s.t. $\mathbf{AB} = \mathbf{I}_{m}$
 - (4) $\left\{\tilde{\mathbf{a}}_{j}\right\}_{j=1}^{m}$ are linearly independent
 - $(5) N(\mathbf{A}^T) = \{\mathbf{0}\}$
 - (6) $\det(\mathbf{A}\mathbf{A}^T) \neq 0$
- Meanings of $\mathbf{v} \in R(\mathbf{A})$ and $\mathbf{w} \notin R(\mathbf{A})$ given $\mathbf{y} = \mathbf{A}\mathbf{x}$
 - (1) \mathbf{y} is a measurement of \mathbf{x} , $R(\mathbf{A})$ is the possible results
 - (a) y = v is a possible or consistent sensor signal
 - (b) y = w is an impossible or inconsistent sensor signal (sensor failure or wrong

model)

- (2) y is an output for input x, R(A) is the achievable outputs
 - (a) v is a possible output
 - (b) w cannot be an output

• Rank of a matrix

- For any matrix $\mathbf{A} \in \mathbf{R}^{m \times n}$, rank $(\mathbf{A}) = \dim[R(\mathbf{A})]$
- rank(**A**) is the maximal number of independent columns or rows \Rightarrow rank(**A**) \leq min(m, n)
- rank(\mathbf{A}) = rank(\mathbf{A}^T)
- rank(\mathbf{A}) + dim[$N(\mathbf{A})$] = n or dim[$R(\mathbf{A})$] + dim[$N(\mathbf{A})$] = $n \Rightarrow$ each dimension of input \mathbf{x} is either crushed to zero or ends up in nonzero output
- Rank of product; $rank(\mathbf{BC}) \le min\{rank(\mathbf{B}), rank(\mathbf{C})\}$
 - (1) If $\mathbf{A} = \mathbf{BC}$ with $\mathbf{A} \in \mathbf{R}^{m \times n}$, $\mathbf{B} \in \mathbf{R}^{m \times r}$, and $\mathbf{C} \in \mathbf{R}^{r \times n}$, then $\operatorname{rank}(\mathbf{A}) \leq r$
 - (2) If rank(\mathbf{A}) = r, then \mathbf{A} = \mathbf{BC} with $\mathbf{A} \in \mathbf{R}^{m \times n}$, $\mathbf{B} \in \mathbf{R}^{m \times r}$, and $\mathbf{C} \in \mathbf{R}^{r \times n}$



- (a) $rank(\mathbf{A}) = r$ is the minimal size of vector needed to faithfully reconstruct \mathbf{y} from \mathbf{x}
- (b) Two step computation, i.e., $\mathbf{z} = \mathbf{C}\mathbf{x}$ and $\mathbf{y} = \mathbf{B}\mathbf{z}$ needs (m+n)r operations compared to mn operations in $\mathbf{y} = \mathbf{A}\mathbf{x}$
- **A** is $\underline{full\ rank}$ if $\operatorname{rank}(\mathbf{A}) = \min\{m, n\}$
 - (1) If m = n, full rank means nonsingular
 - (2) If m > n (narrow), full rank means columns are independent
 - (3) If m < n (wide), full rank means rows are independent

• Inverse of a matrix

- A matrix $\mathbf{A} \in \mathbf{R}^{n \times n}$ is <u>invertible</u> or <u>nonsingular</u> if $\det(\mathbf{A}) \neq 0$. Followings are equivalent to $\det(\mathbf{A}) \neq 0$.

- (1) $\left\{\mathbf{a}_{i}\right\}_{i=1}^{n}$ are a basis for \mathbf{R}^{n}
- (2) $\left\{\tilde{\mathbf{a}}_{j}\right\}_{j=1}^{n}$ are a basis for \mathbf{R}^{n}
- (3) y = Ax has a unique solution x for every y
- (4) $\exists \mathbf{A}^{-1}$ s.t. $\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}_n$
- (5) $N(\mathbf{A}) = \{\mathbf{0}\}$
- (6) $R(\mathbf{A}) = \mathbf{R}^n$
- (7) $\det(\mathbf{A}^T \mathbf{A}) = \det(\mathbf{A} \mathbf{A}^T) \neq 0$
- (8) $\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{A}^T) = n$

Coordinates

- Standard basis vectors in \mathbf{R}^n are $\{\mathbf{e}_i\}_{i=1}^n$ where $\mathbf{e}_i = [00\cdots010\cdots0]^T$
- $\mathbf{x} = x_1 \mathbf{e}_1 + \dots + x_n \mathbf{e}_n$ and $\{x_i\}_{i=1}^n$ are coordinates of \mathbf{x} in the standard basis
- Change of coordinates
 - (1) If $\{\mathbf t_i\}_{i=1}^n$ are another basis for $\mathbf R^n$, $\mathbf x = \tilde{x}_1 \mathbf t_1 + \dots + \tilde{x}_n \mathbf t_n$
 - (2) Define $\mathbf{T} = [\mathbf{t}_1 \mathbf{t}_2 \cdots \mathbf{t}_n]$, then $\mathbf{x} = \mathbf{T} \tilde{\mathbf{x}}$ with $\tilde{\mathbf{x}} = [\tilde{x}_1 \cdots \tilde{x}_n]^T$
 - $(3) \quad \tilde{\mathbf{x}} = \mathbf{T}^{-1}\mathbf{x}$
- Consider a linear transform y = Ax for $A \in \mathbb{R}^{n \times n}$,

$$\mathbf{x} = \mathbf{T}\tilde{\mathbf{x}}$$
, $\mathbf{y} = \mathbf{T}\tilde{\mathbf{y}}$, and $\tilde{\mathbf{y}} = (\mathbf{T}^{-1}\mathbf{A}\mathbf{T})\tilde{\mathbf{x}}$

- (1) $\mathbf{A} \rightarrow \mathbf{T}^{-1}\mathbf{A}\mathbf{T}$: similarity transformation
- (2) Similarity transformation by **T** expresses **y** in coordinates $\mathbf{T} = [\mathbf{t}_1 \mathbf{t}_2 \cdots \mathbf{t}_n]$

• Orthogonal vectors

- The set of vectors $\{\mathbf{u}_i\}_{i=1}^k$ in \mathbf{R}^n are <u>orthogonal</u> if $\mathbf{u}_i^T\mathbf{u}_j = 0$ whenever $i \neq j$ and <u>orthonormal</u> if $\mathbf{u}_i^T\mathbf{u}_j = \delta_{ij}$.

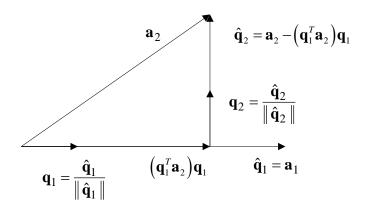
- Let $\mathbf{U} = [\mathbf{u}_1 \cdots \mathbf{u}_k]$, then $\mathbf{U}^T \mathbf{U} = \mathbf{I}_k$ and span $\{\mathbf{u}_i\}_{i=1}^k = R(\mathbf{U})$
- Geometric properties
 - (1) If $\mathbf{w} = \mathbf{U}\mathbf{z}$, then $\|\mathbf{w}\| = \|\mathbf{U}\mathbf{z}\| = \|\mathbf{z}\|$. Mapping U is *isometric*.
 - (2) $\langle \mathbf{U}\mathbf{z}, \mathbf{U}\mathbf{w} \rangle = \langle \mathbf{z}, \mathbf{w} \rangle$ and hence $\angle (\mathbf{U}\mathbf{z}, \mathbf{U}\mathbf{w}) = \angle (\mathbf{z}, \mathbf{w})$
 - (3) If $\mathbf{w} = \mathbf{U}\mathbf{z}$ and $\tilde{\mathbf{w}} = \mathbf{U}\tilde{\mathbf{z}}$, $\langle \mathbf{w}, \tilde{\mathbf{w}} \rangle = \langle \mathbf{z}, \tilde{\mathbf{z}} \rangle$
 - (4) If k = n, the mapping U is either rotation or reflection.

• Orthonormal basis and expansion

- The set of vectors $\{\mathbf{u}_i\}_{i=1}^n$ in \mathbf{R}^n is an <u>orthonormal basis</u> if $\mathbf{U} = [\mathbf{u}_1 \cdots \mathbf{u}_n]$ is square and orthogonal, i.e., $\mathbf{U}^T \mathbf{U} = \mathbf{I}_n$.
- Then, $\mathbf{U}^{-1} = \mathbf{U}^T$, $\mathbf{U}\mathbf{U}^T = \mathbf{I}_n$, and $\sum_{i=1}^n \mathbf{u}_i \mathbf{u}_i^T = \mathbf{I}_n$
- $\mathbf{x} = \mathbf{U}\mathbf{U}^T\mathbf{x} = \sum_{i=1}^n (\mathbf{u}_i^T\mathbf{x})\mathbf{u}_i = \sum_{i=1}^n \langle \mathbf{u}_i, \mathbf{x} \rangle \mathbf{u}_i$
 - (1) $\langle \mathbf{u}_i, \mathbf{x} \rangle = \mathbf{u}_i^T \mathbf{x}$ is the component (or projection) of \mathbf{x} in the direction of \mathbf{u}_i
 - (2) $\mathbf{a} = \mathbf{U}^T \mathbf{x} = \left[\mathbf{u}_1^T \mathbf{x} \ \mathbf{u}_2^T \mathbf{x} \ \cdots \ \mathbf{u}_n^T \mathbf{x} \right]^T$ resolves \mathbf{x} into \mathbf{u}_i components
 - (3) $\mathbf{x} = \mathbf{U}\mathbf{a}$ reconstructs \mathbf{x} from its \mathbf{u}_i components
 - (4) $\mathbf{x} = \mathbf{U}\mathbf{U}^T\mathbf{x} = \mathbf{U}\mathbf{a} = \sum_{i=1}^n a_i \mathbf{u}_i$ is the expansion of \mathbf{x} in $\{\mathbf{u}_i\}_{i=1}^n$ basis

• Gram-Schmidt procedure

- Any independent vectors $\left\{\mathbf{a}_i\right\}_{i=1}^k$ in \mathbf{R}^n can be transformed to orthonormal vectors $\left\{\mathbf{q}_i\right\}_{i=1}^k$ such that $\operatorname{span}\left\{\mathbf{a}_i\right\}_{i=1}^r = \operatorname{span}\left\{\mathbf{q}_i\right\}_{i=1}^r$ for $r \le k$.



- QR decomposition. Let $\mathbf{A} = [\mathbf{a}_1 \mathbf{a}_2 \cdots \mathbf{a}_k]$ and $\mathbf{Q} = [\mathbf{q}_1 \mathbf{q}_2 \cdots \mathbf{q}_k]$, then $\mathbf{A} = \mathbf{Q}\mathbf{R}$ with $\mathbf{Q}^T \mathbf{Q} = \mathbf{I}_k$ and \mathbf{R} is upper triangular, invertible.

• Orthogonal complement

- A collection of subspaces S_1, S_2, \dots, S_p of \mathbb{R}^n is <u>mutually orthogonal</u> if $\mathbf{x}^T \mathbf{y} = 0$, $\forall \mathbf{x} \in S_i$ and $\forall \mathbf{y} \in S_j$ for $i \neq j$.
- The <u>orthogonal complement</u> of a subspace $S \subset \mathbf{R}^n$ is

$$S^{\perp} = \left\{ \mathbf{y} \in \mathbf{R}^n : \mathbf{y}^T \mathbf{x} = 0, \forall \mathbf{x} \in S \right\}.$$

- Note that $R(\mathbf{A})^{\perp} = N(\mathbf{A}^T)$.
- If $\{\mathbf x_i\}_{i=1}^p$ is an orthonormal basis for a subspace $S \subset \mathbf R^n$, then

$$\operatorname{span}\left\{\mathbf{x}_{i}\right\}_{i=1}^{p} \oplus \operatorname{span}\left\{\mathbf{x}_{i}\right\}_{i=p+1}^{n} = \mathbf{R}^{n} \quad \text{and} \quad S^{\perp} = \operatorname{span}\left\{\mathbf{x}_{i}\right\}_{i=p+1}^{n}.$$

• Eigenvalues and eigenvectors

- For $\mathbf{A} \in \mathbf{R}^{n \times n}$, $\lambda \in \mathbf{C}$ is an eigenvalue of \mathbf{A} if $\chi(\lambda) = \det(\lambda \mathbf{I} \mathbf{A}) = 0$.
- For such $\lambda \in \mathbf{C}$, \exists eigenvector, $\mathbf{v} \in \mathbf{C}^n$, $\mathbf{v} \neq \mathbf{0}$ suct that $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$
- For such $\lambda \in \mathbf{C}$, \exists left eigenvector, $\mathbf{w} \in \mathbf{C}^n$, $\mathbf{w} \neq \mathbf{0}$ suct that $\mathbf{w}^T \mathbf{A} = \lambda \mathbf{w}^T$
- Conjugate symmetry: $\mathbf{A}\mathbf{v} = \lambda \mathbf{v} \Leftrightarrow \mathbf{A}\overline{\mathbf{v}} = \overline{\lambda}\overline{\mathbf{v}}$
- Interpretation: scaling by λ

- (1) $\lambda \in \mathbb{R}, \lambda > 0 \implies \mathbf{v}$ and $\mathbf{A}\mathbf{v}$ are in the same direction
- (2) $\lambda \in \mathbb{R}, \lambda < 0 \implies \mathbf{v}$ and $\mathbf{A}\mathbf{v}$ are in the opposite direction
- (3) $\lambda \in \mathbb{R}, |\lambda| < 1 \implies Av$ is smaller than v
- (4) $\lambda \in \mathbb{R}, |\lambda| > 1 \implies Av$ is larger than v

• Diagonalization

- Suppose $\left\{\mathbf{v}_{i} \in \mathbf{R}^{n \times 1}\right\}_{i=1}^{n}$ are linearly independent and $\mathbf{A}\mathbf{v}_{i} = \lambda_{i}\mathbf{v}$ for $\mathbf{A} \in \mathbf{R}^{n \times n}$, then $\mathbf{A}\mathbf{V} = \mathbf{V}\mathbf{\Lambda}$ with $\mathbf{V} = \left[\mathbf{v}_{1} \cdots \mathbf{v}_{n}\right]$ and $\mathbf{\Lambda} = \operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)$
- Similarity transform by V diagonalize A since V is invertible $\Rightarrow V^{-1}AV = \Lambda$
- Conversely, $\mathbf{V}^{-1}\mathbf{A}\mathbf{V} = \mathbf{\Lambda} \implies \left\{\mathbf{v}_{i}\right\}_{i=1}^{n}$ are linearly independent and $\mathbf{A}\mathbf{v}_{i} = \lambda_{i}\mathbf{v}_{i}$
- A is *diagonalizable* if such V exists or A has linearly independent set of eigenvectors.
- A is <u>diagonalizable</u> if A has distinct eigenvalues.
- A is <u>defective</u> if it is not diagonalizable.
- Defective matrix can be put in *Jordan canonical form*.

• Symmetric matrix

- $\mathbf{A} \in \mathbf{R}^{n \times n}$ and $\mathbf{A} = \mathbf{A}^T$
 - (1) Eigenvalues of **A** are real.
 - (2) There is a set of orthonormal eigenvectors of A

(a)
$$\exists \{\mathbf{q}_i\}_{i=1}^n$$
 such that $\mathbf{A}\mathbf{q}_i = \lambda_i \mathbf{q}_i$ and $\mathbf{q}_i^T \mathbf{q}_j = \delta_{ij}$

- (b) If $\{\lambda_i\}_{i=1}^n$ are distinct, corresponding eigenvectors are orthogonal. If not, choose eigenvectors so that they are orthogonal.
- (c) $\mathbf{Q}^{-1}\mathbf{A}\mathbf{Q} = \mathbf{Q}^{T}\mathbf{A}\mathbf{Q} = \mathbf{\Lambda} = \operatorname{diag}(\lambda_{1}, \dots, \lambda_{n})$
- (d) $\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^T = \sum_{i=1}^n \lambda_i \mathbf{q}_i \mathbf{q}_i^T$: decomposition of linear combination of one-

dimensional orthogonal projections

- (3) Interpretations of linear mapping y = Ax
 - (a) Resolve \mathbf{x} into \mathbf{q}_i coordinates

- (b) Scale coordinates by λ_i
- (c) Reconstruct with basis \mathbf{q}_i

$$\begin{array}{c|c} \mathbf{x} & \mathbf{Q}^T \mathbf{x} & \mathbf{\Lambda} & \mathbf{\Lambda} \mathbf{Q}^T \mathbf{x} & \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^T \mathbf{x} = \mathbf{A} \mathbf{x} \\ \hline & \mathbf{Q} & \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^T \mathbf{x} = \mathbf{A} \mathbf{x} \end{array}$$

- (4) Geometric interpretation
 - (a) Rotate by \mathbf{Q}^T
 - (b) Diagonal real scale by Λ
 - (c) Rotate back by **Q**

• Normal matrix

- $\mathbf{A} \in \mathbf{R}^{n \times n}$ is normal if $\mathbf{A}\mathbf{A}^T = \mathbf{A}^T \mathbf{A}$
 - (1) Symmetric matrix is normal; $\mathbf{A} = \mathbf{A}^T$
 - (2) Skew symmetric matrix is normal; $\mathbf{A} = -\mathbf{A}^T$
- $\mathbf{A}\mathbf{A}^T = \mathbf{A}^T\mathbf{A} \iff \exists \mathbf{Q} \text{ such that } \mathbf{Q}^T\mathbf{A}\mathbf{Q} = \mathbf{\Lambda}, \ \mathbf{A} = \mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^T = \sum_{i=1}^n \lambda_i \mathbf{q}_i \mathbf{q}_i^T, \ \mathbf{Q}\mathbf{Q}^T = \mathbf{I}_n,$ $\mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$

• Gram matrix

- For $\mathbf{X} = [\mathbf{x}_1 \cdots \mathbf{x}_r] \in \mathbf{R}^{n \times r}$, Gram matrix or Grammian is $\mathbf{X}^T \mathbf{X} \in \mathbf{R}^{r \times r}$
- $\{\mathbf{x}_i\}_{i=1}^r$ are linearly independent $\iff \det(\mathbf{X}^T\mathbf{X}) \neq 0$
- Factorization
 - (1) QR factorization: $\mathbf{X} = \mathbf{Q}\mathbf{R}$, $\mathbf{Q} = \mathbf{X}\mathbf{R}^{-1}$, $\mathbf{Q}^T\mathbf{X} = \mathbf{R}$
 - (2) Cholesky factorization: $\mathbf{G} = \mathbf{X}^T \mathbf{X} = \mathbf{R}^T \mathbf{Q}^T \mathbf{Q} \mathbf{R} = \mathbf{R}^T \mathbf{R} (= \mathbf{L} \mathbf{U} = \mathbf{L} \mathbf{D} \mathbf{U})$

• Quadratic forms

- A function $f: \mathbf{R}^n \to \mathbf{R}$ of the form $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} = \sum_{i,j=1}^n a_{ij} x_i x_j$ is a quadratic form.
- Examples: $\|\mathbf{B}\mathbf{x}\|^2 = \mathbf{x}^T \mathbf{B}^T \mathbf{B}\mathbf{x}$, $\sum_{i=2}^n (x_{i+1} x_i)^2$, $\|\mathbf{F}\mathbf{x}\|^2 \|\mathbf{G}\mathbf{x}\|^2$
- Uniqueness: if $\mathbf{x}^T \mathbf{A} \mathbf{x} = \mathbf{x}^T \mathbf{B} \mathbf{x}$ for all $\mathbf{x} \in \mathbf{R}^n$ and $\mathbf{A} = \mathbf{A}^T$, $\mathbf{B} = \mathbf{B}^T$, then $\mathbf{A} = \mathbf{B}$.

- $\{\mathbf{x}: f(\mathbf{x}) = a\}$ is a quadratic surface.
- $\{\mathbf{x}: f(\mathbf{x}) \le a\}$ is a quadratic region.
- If $\mathbf{A} = \mathbf{A}^T$, $\mathbf{A} = \mathbf{Q} \Lambda \mathbf{Q}^T$ with $\lambda_1 \geq \cdots \geq \lambda_n$, then
 - (1) $\lambda_n \mathbf{x}^T \mathbf{x} \leq \mathbf{x}^T \mathbf{A} \mathbf{x} \leq \lambda_1 \mathbf{x}^T \mathbf{x}$, $\lambda_n = \lambda_{\min}$ and $\lambda_1 = \lambda_{\max}$
 - (2) $\mathbf{q}_1^T \mathbf{A} \mathbf{q}_1 = \lambda_1 \|\mathbf{q}_1\|^2$ and $\mathbf{q}_n^T \mathbf{A} \mathbf{q}_n = \lambda_n \|\mathbf{q}_n\|^2$
- For $\mathbf{A} = \mathbf{A}^T \in \mathbf{R}^n$,
 - (1) If $\mathbf{x}^T \mathbf{A} \mathbf{x} \ge 0$ for all \mathbf{x} ,
 - (a) A is positive semidefinite and $A \ge 0$
 - (b) $\mathbf{A} \ge 0$ iff $\lambda_{\min}(\mathbf{A}) \ge 0$
 - (2) If $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ for all \mathbf{x} ,
 - (a) A is positive definite and A > 0
 - (b) $\mathbf{A} > 0$ iff $\lambda_{\min}(\mathbf{A}) > 0$
 - (3) A is negative semidefinite if $-A \ge 0$
 - (4) **A** is negative definite if $-\mathbf{A} > 0$
 - (5) If $\mathbf{B} = \mathbf{B}^T$,
 - (a) $\mathbf{A} \ge \mathbf{B}$ if $\mathbf{A} \mathbf{B} \ge 0$
 - (b) $\mathbf{A} < \mathbf{B}$ if $\mathbf{A} \mathbf{B} < 0$
 - (c) A > B means $x^T A x > x^T B x$ for all $x \neq 0$
- Ellipsoids: with $\mathbf{A} = \mathbf{A}^T$, the set $\{\mathbf{x} : \mathbf{x}^T \mathbf{A} \mathbf{x} \le 1\}$ is an ellipsoid in \mathbf{R}^n centered at $\mathbf{0}$.
 - (1) Semi-axes: $\mathbf{s}_i = \lambda_i^{-1/2} \mathbf{q}_i$
 - (a) Eigenvectors define directions of semiaxes
 - (b) Eigenvalues determine lengths of semiaxes
 - (c) $(\mathbf{q}_1, \lambda_1 = \lambda_{\text{max}})$ direction: smallest length, thin
 - (d) $(\mathbf{q}_n, \lambda_n = \lambda_{\min})$ direction: largest length, fat
 - (2) $\sqrt{\lambda_{\text{max}}/\lambda_{\text{min}}}$ = maximum eccentricity

• Matrix norms

- For $\mathbf{A} \in \mathbf{R}^{m \times n}$,
 - (1) Matrix norm or spectral norm of A: $\|\mathbf{A}\| = \max_{\mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|} = \max \max \text{ gain or amplification factor}$

(2) Since
$$\max_{\mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A}\mathbf{x}\|^2}{\|\mathbf{x}\|^2} = \max_{\mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^T \mathbf{A}^T \mathbf{A}\mathbf{x}}{\|\mathbf{x}\|^2} = \lambda_{\max} \left(\mathbf{A}^T \mathbf{A}\right), \|\mathbf{A}\| = \sqrt{\lambda_{\max} \left(\mathbf{A}^T \mathbf{A}\right)}$$

- (3) Similarly, $\min_{\mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|} = \sqrt{\lambda_{\min}(\mathbf{A}^T \mathbf{A})}$
- (4) Observations
 - (a) $\mathbf{A}^T \mathbf{A} \in \mathbf{R}^{n \times n}$ is symmetric and $\mathbf{A}^T \mathbf{A} \ge 0 \implies \lambda_{\max}, \lambda_{\min} \ge 0$
 - (b) $(\mathbf{q}_1, \lambda_{\text{max}} = \lambda_1(\mathbf{A}^T \mathbf{A}))$: maximum gain input direction
 - (c) $\left(\mathbf{q}_{n}, \lambda_{\min} = \lambda_{n} \left(\mathbf{A}^{T} \mathbf{A}\right)\right)$: minimum gain input direction
- Properties of matrix norm

(1) For
$$\mathbf{x} \in \mathbf{R}^{n \times 1}$$
, $\sqrt{\lambda_{\max}(\mathbf{x}^T \mathbf{x})} = \sqrt{\mathbf{x}^T \mathbf{x}} = \|\mathbf{x}\|$

- (2) For any \mathbf{x} , $\|\mathbf{A}\mathbf{x}\| \le \|\mathbf{A}\| \|\mathbf{x}\|$
- (3) Scaling: $\|\alpha \mathbf{A}\| \le |\alpha| \|\mathbf{A}\|$
- (4) Triangle inequality: $\|\mathbf{A} + \mathbf{B}\| \le \|\mathbf{A}\| + \|\mathbf{B}\|$
- $(5) \|\mathbf{A}\| = 0 \Leftrightarrow \mathbf{A} = \mathbf{0}$
- $(6) \|\mathbf{A}\mathbf{B}\| \leq \|\mathbf{A}\| \|\mathbf{B}\|$
- For $\mathbf{A} \in \mathbf{C}^{m \times n}$,
 - (1) F-norm (<u>Frobenius norm</u>) is $\|\mathbf{A}\|_F = \left[\sum_{i=1}^m \sum_{j=1}^n \left|a_{ij}\right|^2\right]^{1/2}$

(2) p-norm is
$$\|\mathbf{A}\|_p = \sup_{\mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A}\mathbf{x}\|_p}{\|\mathbf{x}\|_p}$$
.

• Matrix inversion formula

- Inverse of a partitioned matrix

$$\begin{split} \boldsymbol{R} = & \begin{bmatrix} \boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{C} & \boldsymbol{D} \end{bmatrix} \iff \boldsymbol{R}^{-1} = \begin{bmatrix} \boldsymbol{E}^{-1} & \boldsymbol{F}\boldsymbol{H}^{-1} \\ \boldsymbol{H}^{-1}\boldsymbol{G} & \boldsymbol{H}^{-1} \end{bmatrix} \\ & \boldsymbol{E} = \boldsymbol{A} - \boldsymbol{B}\boldsymbol{D}^{-1}\boldsymbol{C} \\ & \boldsymbol{A}\boldsymbol{F} = -\boldsymbol{B} \\ & \boldsymbol{G}\boldsymbol{A} = -\boldsymbol{C} \\ & \boldsymbol{H} = \boldsymbol{D} - \boldsymbol{C}\boldsymbol{A}^{-1}\boldsymbol{B} \end{split}$$

- Matrix inversion lemma

$$\mathbf{E} = \mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{C} \iff \mathbf{E}^{-1} = \mathbf{A}^{-1} + \mathbf{F}\mathbf{H}^{-1}\mathbf{G}$$

- Partitioned matrix inverse

$$\mathbf{R} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} \iff \mathbf{R}^{-1} = \begin{bmatrix} \mathbf{A}^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} + \begin{bmatrix} \mathbf{F} \\ \mathbf{I} \end{bmatrix} \mathbf{H}^{-1} \begin{bmatrix} \mathbf{G} & \mathbf{I} \end{bmatrix}$$

- Woodbury's identity (rank 1 update)

$$\mathbf{R} = \mathbf{R}_0 + \gamma^2 \mathbf{u} \mathbf{u}^T \iff \mathbf{R}^{-1} = \mathbf{R}_0^{-1} + \frac{\gamma^2}{1 + \gamma^2 \mathbf{u}^T \mathbf{R}_0^{-1} \mathbf{u}} \mathbf{R}_0^{-1} \mathbf{u} \mathbf{u}^T \mathbf{R}_0^{-1}$$

Singular Value Decomposition (SVD)

• SVD of A

- $\mathbf{A} \in \mathbf{R}^{m \times n}$, rank $(\mathbf{A}) = r$

-
$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^T$$

- (1) $\mathbf{U} = [\mathbf{u}_1 \cdots \mathbf{u}_r] \in \mathbf{R}^{m \times r}$, $\mathbf{U}^T \mathbf{U} = \mathbf{I}_r$, \mathbf{u}_i are right or input singular vectors of \mathbf{A}
- (2) $\mathbf{V} = [\mathbf{v}_1 \cdots \mathbf{v}_r] \in \mathbf{R}^{m \times r}$, $\mathbf{V}^T \mathbf{V} = \mathbf{I}_r$, \mathbf{v}_i are left or output singular vectors of \mathbf{A}
- (3) $\Sigma = \operatorname{diag}(\sigma_1, \dots, \sigma_r)$ with $\sigma_1 \ge \dots \ge \sigma_r > 0$, σ_i are nonzero singular values of

A

$$m \qquad \qquad \mathbf{A} \qquad \qquad = m \qquad \mathbf{U} \qquad \boxed{\boldsymbol{\Sigma}} \qquad \mathbf{V}^T \qquad r$$

- $\mathbf{A}^T \mathbf{A} = (\mathbf{U} \mathbf{\Sigma} \mathbf{V}^T)^T (\mathbf{U} \mathbf{\Sigma} \mathbf{V}^T) = \mathbf{V} \mathbf{\Sigma}^2 \mathbf{V}^T$
 - (1) \mathbf{v}_i are eigenvectors of $\mathbf{A}^T \mathbf{A}$
 - (2) $\sigma_i = \sqrt{\lambda_i (\mathbf{A}^T \mathbf{A})}$ and $\lambda_i (\mathbf{A}^T \mathbf{A}) = 0$ for i > r
 - (3) $\|\mathbf{A}\| = \sqrt{\lambda_{\text{max}}(\mathbf{A}^T\mathbf{A})} = \sigma_1$
- $\mathbf{A}\mathbf{A}^T = (\mathbf{U}\mathbf{\Sigma}\mathbf{V}^T)(\mathbf{U}\mathbf{\Sigma}\mathbf{V}^T)^T = \mathbf{U}\mathbf{\Sigma}^2\mathbf{U}^T$

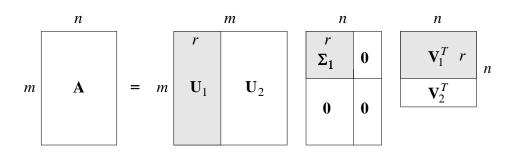
(1) \mathbf{u}_i are eigenvectors of $\mathbf{A}\mathbf{A}^T$

(2)
$$\sigma_i = \sqrt{\lambda_i \left(\mathbf{A} \mathbf{A}^T \right)}$$
 and $\lambda_i \left(\mathbf{A} \mathbf{A}^T \right) = 0$ for $i > r$

- $\{\mathbf{u}_i\}_{i=1}^r$ are orthonormal basis for $R(\mathbf{A})$
- $\{\mathbf v_i\}_{i=1}^r$ are orthonormal basis for $N(\mathbf A)^{\perp}$

• Full SVD

- $\mathbf{A} \in \mathbf{R}^{m \times n}$, rank $(\mathbf{A}) = r$
- $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^T$
 - (1) $\mathbf{U}_1 = [\mathbf{u}_1 \cdots \mathbf{u}_r] \in \mathbf{R}^{m \times r}$, find $\mathbf{U}_2 = [\mathbf{u}_{r+1} \cdots \mathbf{u}_m] \in \mathbf{R}^{m \times (m-r)}$ such that $\mathbf{U} \in \mathbf{R}^{m \times m}$ and $\mathbf{U}^T \mathbf{U} = \mathbf{I}_m$
 - (2) $\mathbf{V}_1 = [\mathbf{v}_1 \cdots \mathbf{v}_r] \in \mathbf{R}^{n \times r}$, find $\mathbf{V}_2 = [\mathbf{v}_{r+1} \cdots \mathbf{v}_n] \in \mathbf{R}^{n \times (n-r)}$ such that $\mathbf{V} \in \mathbf{R}^{n \times n}$ and $\mathbf{V}^T \mathbf{V} = \mathbf{I}_n$
 - (3) $\Sigma_1 = \operatorname{diag}(\sigma_1, \dots, \sigma_r)$ with $\sigma_1 \ge \dots \ge \sigma_r > 0$, σ_i are nonzero singular values of \mathbf{A} , construct $\Sigma = \begin{bmatrix} \Sigma_1 & \mathbf{0}_{r \times (n-r)} \\ \mathbf{0}_{(m-r) \times r} & \mathbf{0}_{(m-r) \times (n-r)} \end{bmatrix} \in \mathbf{R}^{m \times n}$



$$m \begin{bmatrix} n & m & n & n \\ \mathbf{V}_1 & \mathbf{V}_2 \end{bmatrix} \begin{bmatrix} r & \mathbf{V}_1^T & r \\ \mathbf{V}_1 & \mathbf{V}_2 \end{bmatrix} \begin{bmatrix} \mathbf{V}_1^T & r \\ \mathbf{V}_2^T \end{bmatrix} n$$

• Interpretations of SVD

- Decomposition of linear mapping $\mathbf{y} = \mathbf{A}\mathbf{x} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^T\mathbf{x}$
 - (1) $\mathbf{V}^T \mathbf{x}$: coefficients of \mathbf{x} along input directions, $\left\{\mathbf{v}_i\right\}_{i=1}^r$
 - (2) $\Sigma \mathbf{V}^T \mathbf{x}$: scaling by $\{\sigma_i\}_{i=1}^r$
 - (3) $\mathbf{U} \mathbf{\Sigma} \mathbf{V}^T \mathbf{x}$: reconstruction along output directions, $\{\mathbf{u}_i\}_{i=1}^r$

- $\mathbf{A}\mathbf{v}_i = \boldsymbol{\sigma}_i \mathbf{u}_i$
 - (1) \mathbf{v}_1 is the most sensitive (highest gain) input direction
 - (2) \mathbf{u}_1 is the most sensitive (highest gain) output direction
- Geometric interpretation of $\mathbf{y} = \mathbf{A}\mathbf{x} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^T\mathbf{x}$
 - (1) \mathbf{V}^T : rotation
 - (2) Σ : scaling; stretched or compressed or squashed to zero ($\sigma_i = 0$)
 - (3) Zero padding (if m > n) or truncation (if m < n) to get m-vector
 - (4) U: rotation

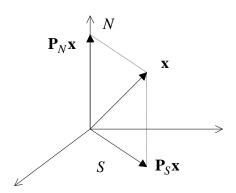
• Pseudo-inverse

- For $\mathbf{A} \in \mathbf{R}^{m \times n}$, $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$ and $\mathbf{A}^+ = \mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{U}^T$ in compact form

- (1) If m > n (narrow) and rank(\mathbf{A}) = n, $\mathbf{A}^+ = \mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{U}^T = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \implies \text{least squares}$ solution
- (2) If m < n (wide) and rank(\mathbf{A}) = m, $\mathbf{A}^+ = \mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{U}^T = \mathbf{A}^T (\mathbf{A} \mathbf{A}^T)^{-1} \Rightarrow \text{minimum}$ norm solution
- Properties
 - $(1) \quad \mathbf{A}^{+}\mathbf{A} = \mathbf{I}_{n}$
 - (2) $\mathbf{A}\mathbf{A}^+ = \mathbf{P}_A$ (see Projection)
 - $(3) \mathbf{A}^{+}\mathbf{A}\mathbf{A} = \mathbf{A}$
 - $(4) \quad \mathbf{A}^{+}\mathbf{A}\mathbf{A}^{+} = \mathbf{A}^{+}$

• Projection

- Assume $R(\mathbf{A}) = \mathbf{R}^n$ for some matrix $\mathbf{A} = \begin{bmatrix} \mathbf{a}_1 \cdots \mathbf{a}_p \mathbf{a}_{p+1} \cdots \mathbf{a}_n \end{bmatrix} \in \mathbf{R}^{m \times n}$, then
 - (1) $\operatorname{rank}(\mathbf{A}) = n$
 - (2) $\{\mathbf{a}_i\}_{i=1}^n$ are linearly independent.
 - (3) span $\left\{\mathbf{a}_{i}\right\}_{i=1}^{n} = \mathbf{R}^{n}$
- Partition A into S and N
 - $(1) \quad \mathbf{A} = \begin{bmatrix} \mathbf{S} & \mathbf{N} \end{bmatrix}$
 - (2) $\mathbf{S} = [\mathbf{a}_1 \cdots \mathbf{a}_p] \in \mathbf{R}^{m \times p}$ and let the subspace $S = \operatorname{span} \{\mathbf{a}_i\}_{i=1}^p = R(\mathbf{S})$
 - (3) $\mathbf{N} = \left[\mathbf{a}_{p+1} \cdots \mathbf{a}_{n}\right] \in \mathbf{R}^{m \times (n-p)}$ and let the subspace $N = \operatorname{span}\left\{\mathbf{a}_{i}\right\}_{i=p+1}^{n} = R(\mathbf{N})$
- By SVD, $\mathbf{S} = \mathbf{U}_{S} \mathbf{\Sigma}_{S} \mathbf{V}_{S}^{T}$ and $\mathbf{N} = \mathbf{U}_{N} \mathbf{\Sigma}_{N} \mathbf{V}_{N}^{T}$
 - (1) $S = \operatorname{span} \left\{ \mathbf{a}_i \right\}_{i=1}^p = R(\mathbf{S}) = R(\mathbf{U}_S)$
 - (2) $N = \text{span} \{\mathbf{a}_i\}_{i=n+1}^n = R(\mathbf{N}) = R(\mathbf{U}_N)$
 - (3) $S \oplus N = \mathbf{R}^n$ and $S^{\perp} = N$
- Projection: for any $\mathbf{x} \in \mathbf{R}^n$, $\mathbf{x} = \mathbf{P}_S \mathbf{x} + \mathbf{P}_N \mathbf{x}$



(1)
$$\mathbf{P}_{S} = \mathbf{S} (\mathbf{S}^{T} \mathbf{S})^{-1} \mathbf{S}^{T} = \mathbf{U}_{S} \mathbf{U}_{S}^{T}$$
 and $\mathbf{P}_{N} = \mathbf{N} (\mathbf{N}^{T} \mathbf{N})^{-1} \mathbf{N}^{T} = \mathbf{U}_{N} \mathbf{U}_{N}^{T} = \mathbf{I}_{n} - \mathbf{U}_{S} \mathbf{U}_{S}^{T}$

(2) Idempotent:
$$\mathbf{P}_{S}^{T} = \mathbf{P}_{S} = \mathbf{P}_{S}^{2}$$
 and $\mathbf{P}_{N}^{T} = \mathbf{P}_{N} = \mathbf{P}_{N}^{2}$

(3)
$$\mathbf{P}_{S}\mathbf{P}_{N} = \mathbf{P}_{N}\mathbf{P}_{S} = \mathbf{0}$$
 and $\mathbf{P}_{S} + \mathbf{P}_{N} = \mathbf{I}_{n}$

(4) Let
$$\mathbf{U} = \begin{bmatrix} \mathbf{U}_S & \mathbf{U}_N \end{bmatrix}$$

(a)
$$\mathbf{U}^T \mathbf{P}_S \mathbf{U} = \begin{bmatrix} \mathbf{I}_p & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$

(b)
$$\mathbf{U}^T \mathbf{P}_N \mathbf{U} = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{(n-p)} \end{bmatrix}$$

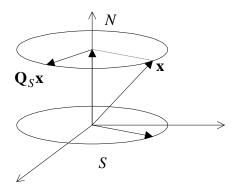
(5) Eigenvalues of P_S and P_N are 1 and 0.

• Rotation

- Same setup as above in projection
- Rotate in the subspace S or rotate around the subspace N

-
$$\tilde{\mathbf{x}} = \mathbf{Q}_S \mathbf{x}$$
 with $\mathbf{Q}_S = \mathbf{U}_S \mathbf{Q} \mathbf{U}_S^T + \mathbf{P}_N$ and $\mathbf{Q}^T \mathbf{Q} = \mathbf{Q} \mathbf{Q}^T = \mathbf{I}_n$

- $\mathbf{P}_{N}\mathbf{x}$ component is not changed.
- $\mathbf{P}_{S}\mathbf{Q}_{S} = \mathbf{Q}_{S}\mathbf{P}_{S}$



• SVD in estimation and inversion

- Model: $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{v}$
 - (1) \mathbf{x} is what we want to estimate.
 - (2) y is sensor measurements.
 - (3) **v** is unknown noise or measurement error with $\|\mathbf{v}\| \le \alpha$
- Optimality of least squares estimator
 - (1) Consider a linear estimator $\hat{\mathbf{x}} = \mathbf{B}\mathbf{y}$ with $\mathbf{B}\mathbf{A} = \mathbf{I}$
 - (2) Error is $\mathbf{e} = \hat{\mathbf{x}} \mathbf{x} = \mathbf{B}\mathbf{v}$ and the set of possible estimation errors is an ellipsoid $\mathbf{e} \in E = \{\mathbf{B}\mathbf{v} : \|\mathbf{v}\| \le \alpha\}$
 - (3) Uncertainty ellipsoid *E* must be small since $\|\mathbf{e}\| = \|\hat{\mathbf{x}} \mathbf{x}\| \le \alpha \|\mathbf{B}\|$
 - (4) Using SVD, we can prove that $\|\mathbf{A}^{+}\| = \|\mathbf{V}\mathbf{\Sigma}^{-1}\mathbf{U}^{T}\| = \|(\mathbf{A}^{T}\mathbf{A})^{-1}\mathbf{A}^{T}\| \le \|\mathbf{B}\|$

• Condition number

- Error analysis of $\mathbf{x} = \mathbf{A}^{-1}\mathbf{y}$ for $\mathbf{A} \in \mathbf{R}^{n \times n}$ and invertible
 - (1) Assume error or noise in y as $y + \delta y$
 - (2) $\mathbf{x} = \mathbf{x} + \delta \mathbf{x}$ with $\delta \mathbf{x} = \mathbf{A}^{-1} \delta \mathbf{y}$ and $\|\delta \mathbf{x}\| = \|\mathbf{A}^{-1} \delta \mathbf{y}\| \le \|\mathbf{A}^{-1}\| \|\delta \mathbf{y}\|$

$$(3) \frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} \leq \|\mathbf{A}\| \|\mathbf{A}^{-1}\| \frac{\|\delta \mathbf{y}\|}{\|\mathbf{y}\|} = \kappa(\mathbf{A}) \frac{\|\delta \mathbf{y}\|}{\|\mathbf{y}\|}$$

- (4) Condition number of **A** is $\kappa(\mathbf{A}) = \frac{\sigma_{\text{max}}(\mathbf{A})}{\sigma_{\text{min}}(\mathbf{A})} \Rightarrow \text{can compute using SVD}$
- (5) If $\kappa(A)$ is large, A is practically singular and ill-conditioned. If small, well-

conditioned.

- (6) $\sigma_{\min}(\mathbf{A})$ is distance to nearest singular matrix.
- Use regularization for the solution of y = Ax with ill-conditioned A.

• Low rank approximation or model simplification

- $\mathbf{A} \in \mathbf{R}^{m \times n}$, rank $(\mathbf{A}) = r$, and $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^T$
- Assume $\sigma_1 > \sigma_2 > \dots > \sigma_p$ and $\{\sigma_i\}_{i=p+1}^r$ are all small, then we can approximate **A** by the optimal rank p approximator,

$$\hat{\mathbf{A}} = \sum_{i=1}^{p} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T} \quad \text{and} \quad \left\| \mathbf{A} - \hat{\mathbf{A}} \right\| = \left\| \sum_{i=p+1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T} \right\| = \sigma_{p+1} + \dots + \sigma_{r}$$

Solution of Ax = b for $A \in \mathbb{R}^{n \times n}$

• Matrix multiplication, C = AB

-
$$c_{ij} = \tilde{\mathbf{a}}_i^T \mathbf{b}_j$$
, $\mathbf{c}_j = \mathbf{A} \mathbf{b}_j$, $\tilde{\mathbf{c}}_i = \tilde{\mathbf{a}}_i^T \mathbf{B}$

- (AB)C = A(BC)
- A(B+C) = AB+AC and (B+C)D = BD+CD
- $\mathbf{FE} \neq \mathbf{EF}$, in general
- Matrix transpose, A^T

$$- \left(\mathbf{A}^T\right)_{ij} = \left(\mathbf{A}\right)_{ji}$$

$$- (\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T$$

- System of linear equations
- Consider a system of linear equations, y = Ax, i.e.,

$$y_1 = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n$$

$$y_2 = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n$$

$$\vdots$$

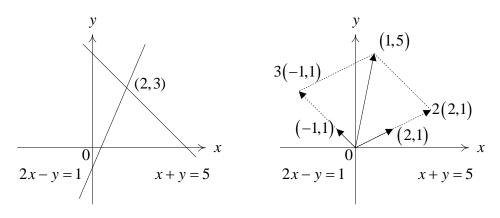
$$y_n = a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n$$

where
$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \in \mathbf{R}^n$$
, $\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \in \mathbf{R}^{n \times n}$, and $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbf{R}^n$

- Three possibilities: one solution, no solution, infinite solutions
- Geometry
- Example:

$$2x - y = 1$$

$$x + y = 5$$
 or
$$x \begin{bmatrix} 2 \\ 1 \end{bmatrix} + y \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$$
 or
$$\begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$$



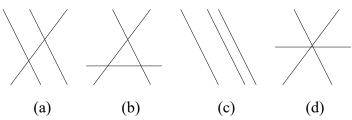
- In \mathbb{R}^3 , ax + by + cz = d is a plane. If d = 0, it passes the origin. If $d \neq 0$, it is parallel to the plane with d = 0. All of these planes are perpendicular to the vector $[a, b, c]^T$.
- $\mathbf{A}\mathbf{x} = \mathbf{b}$, $\mathbf{A} \in \mathbf{R}^{n \times n}$
 - (1) Intersection of n planes:

$$\begin{bmatrix} \tilde{\mathbf{a}}_{1}^{T} \\ \tilde{\mathbf{a}}_{2}^{T} \\ \vdots \\ \tilde{\mathbf{a}} n_{1}^{T} \end{bmatrix} \mathbf{x} = \mathbf{b} \quad \text{or} \quad \begin{aligned} \tilde{\mathbf{a}}_{1}^{T} \mathbf{x} &= b_{1} \\ \tilde{\mathbf{a}}_{2}^{T} \mathbf{x} &= b_{2} \\ \vdots \\ \tilde{\mathbf{a}} n_{1}^{T} \end{bmatrix}$$

(2) Linear combination of column vectors equals to **b**:

$$[\mathbf{a}_1 \mathbf{a}_2 \cdots \mathbf{a}_n] \mathbf{x} = \mathbf{b}$$
 or $x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \cdots + x_n \mathbf{a}_n = \mathbf{b}$

- (3) Coordinates of intersection point = coefficients of linear combination
- <u>Singularity</u>: no solution or infinite solutions
 - (1) No intersection point or infinite intersection points



- (a) 2 parallel: no solution
- (b) No intersection: no solution
- (c) All parallel: no solution
- (d) Line of intersection: infinite solutions
- (2) $\mathbf{b} \notin \operatorname{span} \left\{ \mathbf{a}_i \right\}_{i=1}^n$

• Gaussian elimination

- (Forward elimination + backsubstitution) or (factorization + forward substitution + backsubstitution)
- Example:

$$\begin{cases} 2x + y + z = 5 \\ 4x - 6y = 2 \\ -2x + 7y + 2z = 9 \end{cases} \Rightarrow$$

$$\begin{bmatrix} 2 & 1 & 1 & 5 \\ 4 & -6 & 0 & -2 \\ -2 & 7 & 2 & 9 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 & 1 & 1 & 5 \\ 0 & \underline{-8} & -2 & -12 \\ 0 & 8 & 3 & 14 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 & 1 & 1 & 5 \\ 0 & \underline{-8} & -2 & -12 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

- (1) Pivots cannot be zero.
- (2) If pivot is zero, change order (rows) if possible (permutation).
- (3) If all possible pivots are zero, A is singular (i.e., A is not invertible).
- After elimination with $O(n^3)$, solve for **x** by back substitution with $O(n^2)$.

• LU or LDU factorization

- For repeated solutions with different RHS, store multipliers during elimination process in a lower triangular matrix L. Main diagonal elements of L are all one.
- Store pivots and the rest of each row in an upper triangular matrix U. Main diagonal elements of U are pivots.

$$\mathbf{L} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \text{ and } \mathbf{U} = \begin{bmatrix} 2 & 1 & 1 \\ 0 & -8 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$

- We can split **U** into **D** and **U** as

$$\mathbf{L} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}, \quad \mathbf{D} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -8 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ and } \mathbf{U} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$

- Using LU factorization, A = LU. For a given **b**,
 - (a) Forward substitution with $O(n^2)$: solve $\mathbf{Lc} = \mathbf{b}$ for \mathbf{c}
 - (b) Backsubstitution with $O(n^2)$: solve $\mathbf{U}\mathbf{x} = \mathbf{c}$ for \mathbf{x}
- Using LDU factorization, A = LDU. For a given b,

- (a) Forward substitution with $O(n^2)$: solve $\mathbf{Lc} = \mathbf{b}$ for \mathbf{c}
- (b) Simple divisions with O(n): solve $\mathbf{De} = \mathbf{c}$ for \mathbf{e}
- (c) Backsubstitution with $O(n^2)$: solve $\mathbf{U}\mathbf{x} = \mathbf{e}$ for \mathbf{x}

• Inverse matrix

- $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a unique solution. $\Leftrightarrow \mathbf{A}$ is nonsingular. $\Leftrightarrow \mathbf{A}^{-1}$ exists.
- If \mathbf{A}^{-1} exists, $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$ and $\mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$ and $\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$.
- All pivots are nonzero. \Leftrightarrow \mathbf{A}^{-1} exists.
- All eigenvalues are nonzero. \Leftrightarrow \mathbf{A}^{-1} exists.
- Determinant of **A** is nonzero. \Leftrightarrow **A**⁻¹ exists.
- $(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}, \ (\mathbf{A}^{-1})^{T} = (\mathbf{A}^{T})^{-1}$

• Symmetric nonsingular matrix

- **A** is symmetric \Leftrightarrow **A** = **A**^T
- If **A** is symmetric and nonsingular, $\mathbf{A} = \mathbf{L}\mathbf{U} = \mathbf{L}\mathbf{L}^T = \mathbf{U}^T\mathbf{U}$: Cholesky factorization
- If **A** is symmetric and nonsingular, $\mathbf{A} = \mathbf{L}\mathbf{D}\mathbf{U} = \mathbf{L}\mathbf{D}\mathbf{L}^T = \mathbf{U}^T\mathbf{D}\mathbf{U}$

Comments

- If all pivots are povitive, A is called *positive definite*.
- If **A** is *ill-conditioned*,
 - (1) Computation is sensitive to a small numerical error.
 - (2) Use *partial pivoting* where we pick up the largest pivot among all possible pivots. This requires permutation.
- If **A** is not ill-conditioned, it is well-conditioned.

Solution of Ax = b for $A \in \mathbb{R}^{m \times n}$

$\bullet Ax = b$

- Scalar example: ax = b
 - (a) $a \neq 0 \Rightarrow$ unique solution, nonsingular
 - (b) a = 0 and $b = 0 \Rightarrow$ infinite number of solutions, underdetermined
 - (c) a = 0 and $b \neq 0 \Rightarrow$ no solution, inconsistent
- $\mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{A} \in \mathbf{R}^{m \times n}$
 - (a) Infinite number of solutions for every **b**
 - (b) Infinite number of solutions for some **b** and no solution for other **b**
 - (c) One solution for some **b** and no solution for other **b**
- Example

$$\mathbf{A} = \begin{bmatrix} \frac{1}{2} & 3 & 3 & 2 \\ 2 & 6 & 9 & 5 \\ -1 & -3 & 3 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} \frac{1}{0} & 3 & 3 & 2 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 6 & 2 \end{bmatrix} \Rightarrow \begin{bmatrix} \frac{1}{0} & 3 & 3 & 2 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \mathbf{U}$$

$$\mathbf{U} = \begin{bmatrix} \frac{1}{0} & 3 & 3 & 2 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} : \text{ echelon form, } \mathbf{L} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 2 & 1 \end{bmatrix}, \text{ and } \mathbf{A} = \mathbf{L}\mathbf{U}$$

- $\mathbf{PA} = \mathbf{LU}$ for any $\mathbf{A} \in \mathbf{R}^{m \times n}$ with permutation \mathbf{P}
- Homogeneous solution, Ax = 0
- $Ax = 0 \Rightarrow Ux = 0$
- Example

$$\begin{bmatrix} \frac{1}{0} & 3 & 3 & 2 \\ 0 & 0 & \frac{3}{0} & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \begin{cases} x_3 = -\frac{1}{3}x_4 \\ x_1 = -3x_2 - x_4 \end{cases} \Rightarrow \mathbf{x} = \begin{bmatrix} -3x_2 - x_4 \\ x_2 \\ -\frac{1}{3}x_4 \\ x_4 \end{bmatrix} = x_2 \begin{bmatrix} -3 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -1 \\ 0 \\ -\frac{1}{3} \\ 1 \end{bmatrix}$$

- Two kinds of variables
 - (a) Column with pivot \Rightarrow basic variable (x_1 and x_3)
 - (b) Column without pivot \Rightarrow free variable (x_2 and x_4)
- Procedure for homogeneous solution

- (a) Identify basic and free variables from Ux = 0
- (b) For each free variable, set it to 1 and set all other free variables to 0. Solve Ux = 0
- (c) Combinations of all solutions from (b) equal to $N(\mathbf{A})$
- Comments
 - (a) If n > m (wide matrix), nontrivial homogeneous solutions $(\mathbf{x} \neq \mathbf{0})$ of $\mathbf{A}\mathbf{x} = \mathbf{0}$ exist.
 - (b) Number of free variables = $\dim\{N(\mathbf{A})\}\$
 - (c) Finding homogeneous solutions is equivalent to finding $N(\mathbf{A})$.

• Inhomogeneous or particular solution, $Ax = b \neq 0$

- $Ax = b \Rightarrow Ux = c$
- Example

$$\begin{bmatrix} \frac{1}{0} & 3 & 3 & 2 \\ 0 & 0 & \frac{3}{0} & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 - 2b_1 \\ b_3 - 2b_2 + 5b_1 \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 5 \\ -1 & -3 & 3 & 0 \end{bmatrix} = \begin{bmatrix} \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_3 \mathbf{a}_4 \end{bmatrix}$$

$$R(\mathbf{A}) = \text{span}\{\mathbf{a}_1, \mathbf{a}_3\}$$
 or $R(\mathbf{A}) = \{(b_1, b_2, b_3) : b_3 - 2b_2 + 5b_1 = 0\}$: plane

If
$$\mathbf{b} = \begin{bmatrix} 1 & 5 & 5 \end{bmatrix}^T$$
, $\begin{bmatrix} \frac{1}{0} & 3 & 3 & 2 \\ 0 & 0 & \frac{3}{0} & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix}$ and $\begin{cases} x_3 = 1 - \frac{1}{3}x_4 \\ x_1 = -2 - 3x_2 - x_4 \end{cases}$.

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \\ 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} -3 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -1 \\ 0 \\ -\frac{1}{3} \\ 1 \end{bmatrix}$$
particular solution

particular solution

- Procedure for particular solution

(a)
$$\mathbf{A}\mathbf{x} = \mathbf{b} \Rightarrow \mathbf{U}\mathbf{x} = \mathbf{c}$$

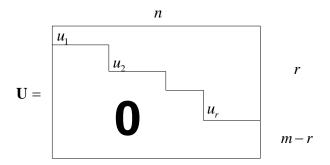
(b) Set all free variables to 0 and solve Ux = c for x

• Total solution, $Ax = b \neq 0$

- Total solution = particular solution + homogeneous solution ($\mathbf{x} = \mathbf{x}_p + \mathbf{x}_h$)
- Number of basic variables = r = number of pivots = rank(\mathbf{A}) = number of independent columns = number of independent rows
- Number of free variables = n r

Comments

- Echelon form with *r* pivots, $\{u_i\}_{i=1}^r$



- $r = n \Rightarrow$ no free variable, $N(\mathbf{A}) = \{\mathbf{0}\}$, nontrivial homogeneous solution does not exist, $\{\mathbf{a}_i\}_{i=1}^n$ are linearly independent
- $r < n \Rightarrow (n r)$ free variables, nontrivial homogeneous solution exists
- $r = m \Rightarrow$ particular solution exists for any $\mathbf{b} \in \mathbf{R}^m$, $R(\mathbf{A}) = \mathbf{R}^m$
- r < m
 - (a) $c_{m-r} = c_{m-r+1} = \cdots = c_m = 0 \implies \text{system is consistent and particular solution exists}$
 - (b) $c_i \neq 0$ for some $m-r \leq i \leq m$ \implies system is inconsistent and particular solution does not exists
- rank(\mathbf{A}) = $r \le \min(m, n)$

• Inverse of $A \in \mathbb{R}^{m \times n}$

- Left inverse: $\mathbf{B}\mathbf{A} = \mathbf{I}_n, \mathbf{B} \in \mathbf{R}^{n \times m}$

- Right inverse: $\mathbf{AC} = \mathbf{I}_m, \mathbf{C} \in \mathbf{R}^{m \times n}$
- If both **B** and **C** exist, $\mathbf{B} = \mathbf{B}(\mathbf{AC}) = (\mathbf{BA})\mathbf{C} = \mathbf{C} = \mathbf{A}^{-1}$ and m = n
- Existence and uniqueness of solution of Ax = b, $A \in \mathbb{R}^{m \times n}$
- Existence ($m \ge n$, narrow matrix): one or many solutions
 - (a) Ax = b has "at least" one solution for every **b** iff $R(A) = R^m$.
 - (b) In this case, r = m and right inverse $\mathbf{C} \in \mathbf{R}^{m \times n}$ exists such that $\mathbf{AC} = \mathbf{I}_m$.
 - (c) $\mathbf{B} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T$ and rank $(\mathbf{A}^T \mathbf{A}) = n$
 - (d) Least squares (LS) solution
- Uniqueness ($m \le n$, wide matrix): one or zero solution
 - (a) Ax = b has "at most" one solution for every **b** iff $n = r = \dim R(A)$.
 - (b) In this case, r = n and left inverse $\mathbf{B} \in \mathbf{R}^{n \times m}$ exists such that $\mathbf{B} \mathbf{A} = \mathbf{I}_n$.
 - (c) $\mathbf{C} = \mathbf{A}^T (\mathbf{A} \mathbf{A}^T)^{-1}$ and rank $(\mathbf{A} \mathbf{A}^T) = m$
 - (d) Minimum norm solution
- Square matrix (m = n)
- $\mathbf{B} = \mathbf{C} = \mathbf{A}^{-1}$ iff m = n = r
- Followings are equivalent
 - (a) $R(\mathbf{A}) = \mathbf{R}^m$, $A\mathbf{x} = \mathbf{b}$ has at least one solution for any \mathbf{b}
 - (b) $N(\mathbf{A}) = \{\mathbf{0}\}$, columns of **A** are linearly independent
 - (c) $R(\mathbf{A}^T) = \mathbf{R}^n$
 - (d) Rows of A are linearly independent
 - (e) **PA** = **LDU** with all $d_{ii} \neq 0$ (nonzero pivot)
 - (f) \mathbf{A}^{-1} exists such that $\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}_n$
 - (g) $det(\mathbf{A}) \neq 0$
 - (h) All eigenvalues of A are nonzero
 - (i) $\mathbf{A}^T \mathbf{A}$ is positive definite
- Example: polynomial of degree (n-1) has (n-1) roots \Rightarrow Vandermonde's matrix

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} 1 & t_1 & t_1^2 & \cdots & t_1^{n-1} \\ 1 & t_2 & t_2^2 & \cdots & t_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & t_n & t_n^2 & \cdots & t_n^{n-1} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} = \mathbf{b} , \mathbf{A} \text{ is nonsingular}$$

Four Subspaces of $A \in \mathbb{R}^{m \times n}$

• Four subspaces of $A \in \mathbb{R}^{m \times n}$

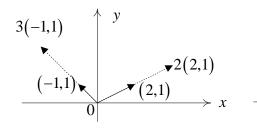
- Column space of $\mathbf{A} = \text{range of } \mathbf{A} = R(\mathbf{A}) = \text{span} \left\{ \mathbf{a}_i \right\}_{i=1}^n \subset \mathbf{R}^m, \dim R(\mathbf{A}) = r$
- Nullspace of $\mathbf{A} = N(\mathbf{A}) = \{ \mathbf{x} : \mathbf{A}\mathbf{x} = \mathbf{0}, \mathbf{x} \in \mathbf{R}^n \} \subset \mathbf{R}^n, \dim N(\mathbf{A}) = n r \}$
- Row space of $\mathbf{A} = \text{range of } \mathbf{A}^T = R(\mathbf{A}^T) = \text{span} \left\{ \tilde{\mathbf{a}}_i \right\}_{i=1}^m \subset \mathbf{R}^n$, $\dim R(\mathbf{A}^T) = r$
- Left nullspace of \mathbf{A} = nullspace of \mathbf{A}^T = $N(\mathbf{A}^T) = \{\mathbf{y} : \mathbf{A}^T \mathbf{y} = \mathbf{0}, \mathbf{y} \in \mathbf{R}^m\} \subset \mathbf{R}^m$, $\dim N(\mathbf{A}^T) = m - r$
- $A \in \mathbb{R}^{m \times n}$ and echelon form U(PA = LU)
- $R(\mathbf{A}^T) = R(\mathbf{U}^T) \subset \mathbf{R}^n$
 - (a) $\dim R(\mathbf{A}^T) = \dim R(\mathbf{U}^T) = \text{number of pivots} = r = \text{row rank} = \text{column rank}$
 - (b) Basis of $R(\mathbf{A}^T) = R(\mathbf{U}^T) = r$ nonzero rows of \mathbf{U}
- $N(\mathbf{A}) = N(\mathbf{U}) \subset \mathbf{R}^n \quad (\mathbf{A}\mathbf{x} = \mathbf{0} \Leftrightarrow \mathbf{U}\mathbf{x} = \mathbf{0})$
 - (a) $\dim N(\mathbf{A}) = \dim N(\mathbf{U}) = n r = \text{number of free variables} = \text{nullity of } \mathbf{A}$
 - (b) $\ker(\mathbf{A}) = N(\mathbf{A}) = N(\mathbf{U}) \subset \mathbf{R}^n$: kernel of \mathbf{A}
 - (c) For each free variable, we can generate one basis vector
- $R(\mathbf{A}) \neq R(\mathbf{U}), R(\mathbf{A}) \subset \mathbf{R}^m$
 - (a) $R(\mathbf{U}) = \operatorname{span} \{\mathbf{u}_i\}_{i=1}^n \subset \mathbf{R}^m$
 - (b) $\dim R(\mathbf{A}) = \dim R(\mathbf{U}) = \text{number of pivots} = r = \text{column rank} = \text{row rank}$

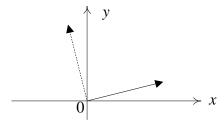
• Dimensions

- $\dim R(\mathbf{A}) = \dim R(\mathbf{A}^T) = \text{number of pivots} = \text{rank}(\mathbf{A})$
- Number of basic variables (r) + number of free variables (n-r) = number of columns $(n) \Leftrightarrow \dim R(\mathbf{A}) + \dim N(\mathbf{A}) = n$
- $r + (m r) = m \Leftrightarrow \dim R(\mathbf{A}^T) + \dim N(\mathbf{A}^T) = m$

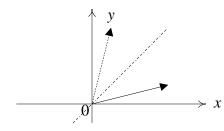
Linear Transformation, y = Ax

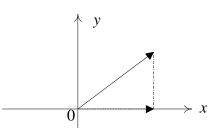
- Linear transformation, y = Ax, $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$
- Linearity: $\mathbf{A}(c\mathbf{x} + d\mathbf{y}) = c(\mathbf{A}\mathbf{x}) + d(\mathbf{A}\mathbf{y})$
- Examples
 - (a) Stretching: $\mathbf{A} = \begin{bmatrix} c & 0 \\ 0 & c \end{bmatrix} = c\mathbf{I}$
 - (b) Rotation: $\mathbf{A} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$



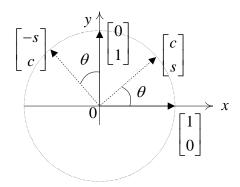


- (c) Reflection: $\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
- (d) Projection: $\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$





- Linear transformation matrix A depends on basis
- Basis and linear transformation
- $\mathbf{v} = \sum_{i=1}^{n} c_i \mathbf{x}_i$ with a basis $\{\mathbf{x}_i\}_{i=1}^{n}$, then $\mathbf{A}\mathbf{v} = \sum_{i=1}^{n} c_i \mathbf{A}\mathbf{x}_i$
- $\mathbf{A}: V \to W$ with $V = \operatorname{span} \left\{ \mathbf{x}_i \right\}_{i=1}^n$ and $W = \operatorname{span} \left\{ \mathbf{y}_i \right\}_{i=1}^m \implies \mathbf{A} \mathbf{x}_i = \sum_{i=1}^m a_{ji} \mathbf{y}_j$
- $\mathbf{A}: V \to W$ and $\mathbf{B}: U \to V \Rightarrow \mathbf{AB}: U \to W$ (i.e, $\mathbf{z} = \mathbf{Ay} = \mathbf{ABx}$)
- Rotation



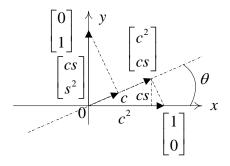
$$- \mathbf{Q}_{\theta} = \begin{bmatrix} c & -s \\ s & c \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

-
$$\mathbf{Q}_{\theta} = \begin{bmatrix} c & -s \\ s & c \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

- $\mathbf{Q}_{\theta} \mathbf{Q}_{-\theta} = \begin{bmatrix} c & -s \\ s & c \end{bmatrix} \begin{bmatrix} c & s \\ -s & c \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

-
$$\mathbf{Q}_{\theta}^2 = \mathbf{Q}_{\theta} \mathbf{Q}_{\theta} = \mathbf{Q}_{2\theta}$$
 and $\mathbf{Q}_{\theta} \mathbf{Q}_{\varphi} = \mathbf{Q}_{\theta+\varphi}$

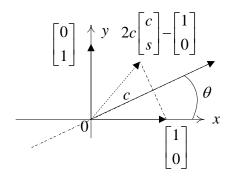
• Projection



$$- \quad \mathbf{P}_{\theta} = \begin{bmatrix} c^2 & cs \\ cs & s^2 \end{bmatrix}$$

- $\mathbf{P}_{\theta}^2 = \mathbf{P}_{\theta} \mathbf{P}_{\theta} = \mathbf{P}_{\theta}$: idempotent
- $\mathbf{P}_{\theta}^{T} = \mathbf{P}_{\theta}$: symmetric

• Reflection



$$- \quad \mathbf{H}_{\theta} = \begin{bmatrix} 2c^2 - 1 & 2cs \\ 2cs & 2s^2 - 1 \end{bmatrix}$$

-
$$\mathbf{H}_{\theta} = 2\mathbf{P}_{\theta} - \mathbf{I}$$
 or $\mathbf{H}_{\theta} + \mathbf{I} = 2\mathbf{P}_{\theta}$

-
$$\mathbf{H}_{\theta}^2 = \mathbf{H}_{\theta} \mathbf{H}_{\theta} = (2\mathbf{P}_{\theta} - \mathbf{I})^2 = 4\mathbf{P}_{\theta}^2 - 4\mathbf{P}_{\theta}^2 + \mathbf{I} = \mathbf{I} \implies \mathbf{H}_{\theta}^{-1} = \mathbf{H}_{\theta}$$