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Linear Functions

e System of linear equations
- Consider a function or mapping, Yy = AX, i.e.,

Y1 = a X +a,X, +--+a, X,
Y, =8y X tanX; +---+a,,X,

Yim = 8 X 8%+, X,

Y1 a; @, - 4, X
Ay Ay Gy,

y2 m mxn XZ n
where y=| " |eR", A= eR™ ,and x=| " |eR

ym am1 a'm2 '“ a'mn Xn
(1) y is measurement or observation; x is unknown to be determined

(2) x is input; y is output

e Linear functions
- A function or mapping f :R" —>R" is linear if
(1) f(x+y)=f(Xx)+f(y), vx,yeR"
2) f(ax)=af(x),VxeR"VaeR
- Any linear function f:R" —R"™ can be writtenas f(X)=Ax forsome AeR™"

n
o Interpretation of y, => a;X;
=

(1) @&; isa gain from jth input (X;) to ith output (y;)

(2) ith row of A < ith output
(3) jth column of A < jth input

(4) 8; =0 < ith output (y;) does not depend on jth input (X;)
(5) @, dominatesall g; forj#p < Y, depends mainlyon X,
(6) a; dominatesall g; fori=q < Xx, affects mainly Y,

(7) A is diagonal, i.e., a;=0fori=j < vy, dependsonlyon X
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(8) Sparsity pattern of A determines input-output interactions

e Interpretation of y = Ax

- Sum (linear combination) of columns. Write A as A=[aa,---a,] where
T m
aj:[a“azj---amj eR™. Then,

n
y=Xa, +Xa,+---+Xa, :ijaj
=

- Inner product with rows. Write A as

=T AT

a4 ay 1 X

T T

a a X .
A=|?| where & =| ."|eR".Then y=| 2" | or y,=(&,x).

_é.-rrn &, é.:nx_

X2
(A, x)=-2 (a,x)=0} (A, x)=2 (3, x) = -2
a
Xy
a,
A\

- Block diagram or signal flow graph

(1) For a system, [yl} _ {ail am}{xi}
y2 a-21 a22 X2
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Xo e Y2

A, A
(2) For a system, [yl} ={ H Alz}

and y, =A,.X,

}, we can partition as Y, = A X, + A%,

X1 A Y1

e Composite functions or systems y = ABz
- Matrix multiplication, C=AB eR™" where AcR™" and BeR™". Then,

cij=kzn_1:aikbkj:~1bj (3.b,), C=AB=[Ab,-Ab,],and C=AB-

- Composite interpretation.

z X y z y

{p {n {m

e Many engineering problems can be modelled as y = Ax

Il
©

| —
3

- Estimation or inversion problems
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(1) Model
(a) vy, isith measurement or sensor reading

(b) X; isjth parameter to be estimated

(c) @; issensitivity of ith sensor to jth parameter

(2) Problems
(a) GivenYy, find x
(b) Find all x's that can result in y
(c) If there is no x such that y = Ax, find the best X suchthat y~AX = least
square error solution and minimum norm solution
- Control or design problems
(1) Model
(a) x is design parameter or inputs or controls
(b) y is results or outputs or states
(c) A describes how input affects output
(2) Problems
(a) Given a desirable Y~ (specifications), find x so thaty = y"
(b) Find all x's that can resultiny = y
(c) Among all x's in (b), find a small or efficient one
- Signal processing problems
(1) Model
(a) Yy, isoutput signal at time i

(b) X; isinput signal at time j

(2) Problems
(a) Given a desirable Yy~ , find A so that Ax =y’
(b) Given A, find B such that By = x or By = x
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Linear Algebra

e Vector space and subspace (see Vector Space)
- V,=R", subspace of R"

- V,={0} where 0eR", subspace of R"
- Vy=span{v,,V,, ---,v,} where v, eR",subspace of R"

- V,={x:R, >R’

X is differentiable} where (X+2)(t) =x(t)+z(t) ,
(ax)(t) = ax(t) (apointin Vy is a trajectory in R")

- Vo= {X eV, X =AX} , subspace of V4

e Linear independence, basis, dimension (see Vector Space)

- Linearly independent vs. linearly dependent

- V= span{v,};, and {v,} are linearly independent

(@) {v;};, isa basis and dimension of V'is n.

(b) VXEV,X:Zn:CiVi, {c.}, isunique

i=1
(c) Basis is not unique, i.e., ¥ may have infinite number of bases
(d) All bases have the same number of vectors (equal to dimension)
(e) Any linearly independent set of vectors in J can be extended to a basis

(f) Any spanning set of /' can be reduced to a basis

e Real matrix and vector

- R™"denotes the vector space of all mxn real matrices:

& oA,
AeR™ o A=[a;]=| :

a a

ml mn

- R™ (i.e., R™") denotes the vector space of all mx1 real column vectors.
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-For xeR™andyeR", xy" eR™" is the outer product.

-For xeR"andyeR", (x,y)=x"y eR"* is the inner product.

e Complex matrices

-For AeC™ then A" =a,|.

-For xeC"andyeC", x"y= Z;iyi = ﬁ( is the inner product.

i=1

- AeC™ is unitary if A"A= |,, Hermitian if A" =A, and positive definite if

x"Ax>0,VxeC"and x#0.

e Vector norm (Euclidean norm, see normed vector space)

“For xeR", X=X+ X2 +---x2 =X"x
X=X 43+ x]

- dist(x,y) =[x -]

e Inner product (see Inner Product Space)

- For x,yeC, <X,y>:XHy: X;y1+"'X;yn :anxi*%
i1

-For X,y eR", (xy)=XTy=xY+ XY, =D XY,
i=1
- Row vector X' represents a linear functional: R" >R

- {X X'y < O} defines a halfspace with boundary passing 0 and outward normal vector

y

e Null space of a matrix

- For amatrix A eR™", the null space of A is
N(A)={xeR": Ax=0}.
(1) N(A) is set of vectors mapped to zero by Yy = AX

(2) N(A) is set of vectors orthogonal to all rows of A; Yy, =(&,Xx)=0 forall i
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-If N(A)={0},

(1) y=AX uniquely determines x (the linear transformation does not loose

information, i.e., can be inversed)

i=1

(2) Since y = anxiai and {x}' isunique, {a}' isa basis
i=1

(3) A has a left inverse, i.e., IBeR™ st. BA=1,

(4) det(ATA)=0
- Meanings of ze N(A)
(1) Ambiguity in x. Given y=Ax and zeN(A),
(a) y=A(X+2z) = zisundetectable
(b) If y=AX,then X=X+z = xand X are indistinguishable
(2) Freedom of input choice. Given y=Ax and ze N(A)

(a) 0=Az = zis input with no result
(b) X=x+z provides different input choice for the same result

e Range of a matrix

- For a matrix A eR™", the range of A is
R(A)={y eR™:y=Ax for some x eR"| =span{a;},
- A is called onto if R(A)=R"
(1) span{a;};, =R™ andn>m

(2) y=AX can be solved for x

(3) A has a right inverse, i.e., IBeR"™™ st. AB=1_
4) {é 1}11 are linearly independent

(5) N(A")={0}

(6) det(AAT)=0
- Meanings of ve R(A) and we¢R(A) given y=AX
(1) y is a measurement of x, R(A) is the possible results
(a) y = v is a possible or consistent sensor signal

(b) y = w is an impossible or inconsistent sensor signal (sensor failure or wrong
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model)
(2) y is an output for input x, R(A) is the achievable outputs
(a) v is a possible output

(b) w cannot be an output

e Rank of a matrix
- For any matrix A eR™", rank(A) = dim[R(A)]
- rank(A) is the maximal number of independent columns or rows =
rank(A) < min(m, n)
- rank(A) = rank(A")
- rank(A) + dim[N(A)] = n or dim[R(A)] + dim[N(A)] = n = each dimension of input x

is either crushed to zero or ends up in nonzero output

- Rank of product; rank(BC) < min {rank(B), rank(C)}
() IfA=BCwith AecR™", BeR™" ,and CeR"™", then rank(A)<r

(2) If rank(A) =r, then A=BC with AeR™", BeR™ ,and CeR"™

X y X y

{n {r {m _ {n {m

(a) rank(A)=r is the minimal size of vector needed to faithfully reconstruct

y from x
(b) Two step computation, i.e., z = Cx and y = Bz needs (m + n)r operations

compared to mn oprtations in y = Ax
- A'is full rank if rank(A) =min{m,n}

(1) If m = n, full rank means nonsingular
(2) If m > n (narrow), full rank means columns are independent

(3) If m <n (wide), full rank means rows are independent

e Inverse of a matrix

- Amatrix A eR™ is invertible or nonsingular if det(A) # 0. Followings are equivalent
to det(A) = 0.
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(1) {ai}in:l are a basis for R"

(2) {éj }Ll are a basis for R"
(3) y=AX has aunique solution x for every y

(4) 3IA™ st. AAT=ATA=1,

(5) N(A)={0}
(6) R(A)=R"
(7) det(A"A)=det(AAT) %0
(8) rank(A)=rank(A") =n
e Coordinates

- Standard basis vectors in R" are {e;} where ei=[00---010---0]T

- Xx=Xx@ +-+Xg, and {x} arecoordinates of x in the standard basis
- Change of coordinates
n . ~ ~
() If {t;}_, areanother basis for R", x =%t +--+Xt,

T

(2) Define T=[t;t,---t,],then Xx=TX with X=[% X ]

(3) x=T"x
- Consider a linear transform y =Ax for AeR™,

x=TX, y=Ty,and §=(TAT)x
(1) A— TAT : similarity transformation

(2) Similarity transformation by T expresses y in coordinates T=[t,t,---t,]

e Orthogonal vectors

- The set of vectors {ui}:;l in R" are orthogonal if uju;=0 wheneveri= j and

orthonormal if uiTuj =0;.
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-Let U=[u,---u,],then U'U=1, and span{ui}ikzlz R(U)
- Geometric properties

(1) If w=Uz,then |w||=|Uz|=|z||. Mapping U is isometric.
(2) (Uz,Uw)=(z,w) and hence £(Uz,Uw)=/(z,w)

3)If w=Uz and W=Uz, (w,W)=(z2)

(4) If k = n, the mapping U is either rotation or reflection.

e Orthonormal basis and expansion

- The set of vectors {u;}.  in R" is an orthonormal basis if U=[u,---u,] is square

and orthogonal, i.e., U'u= l,.

-Then, U"=U", UU" =1, and Zn:uiulen
i=1
- x:UUTx:Zn:(uiTx)ui :znxui,x)ui

i=1 i=1

(1) (u;,x)=u;x is the component (or projection) of x in the direction of U

T :
(2) a=U"x :I:UIX upx --- uEX] resolves x into U; components
(3) x=Ua reconstructs x from its U, components

4) x=UU"x=Ua=> au, istheexpansionofxin {u.} = basis
— i ifiz1

e Gram-Schmidt procedure
- Any independent vectors {ai}f( in R" can be transformed to orthonormal vectors

i=1

{g;}", suchthat span{al’ =span{q,} , for r<k.

10
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az d, :aZ_(anZ)ql
! 4,
42 ==
|0 |
S
G (ala, ), G =a,

- QR decomposition. Let A=[aa, --a,] and Q=[0,q,---q,], then A=QR with

Q'Q =1, and R is upper triangular, invertible.

e Orthogonal complement

- A collection of subspaces S,,S,,---,S, of R" is mutually orthogonal if

x'y=0, VxeS and vy €S, fori= j.

- The orthogonal complement of a subspace S cR" is

St :{yeR”:yTx:O,VXES}.
- Note that R(A)" =N(A").
-If {x;};, isan orthonormal basis for a subspace S =R", then

n n

span{x;}’ ®span{x} R" and S*=span{x}

i=p+1 = i=p+1 °

¢ Eigenvalues and eigenvectors

- For AeR™, 1eC isanecigenvalue of A if y(A)=det(A1-A)=0.
- Forsuch 4eC, Jeigenvector,veC",v=0 suctthat Av=Av
- Forsuch AeC, 3 lefteigenvector, weC",w=0 suctthat W' A=Aw’

- Conjugate symmetry: AV =AvV< AV=AV
- Interpretation: scaling by 4

11
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(1) 2eR,A1>0 = vand Av are in the same direction
(2) 21eR,1<0 = vand Av are in the opposite direction

3) 1eR, |ﬂ| <1 = Av is smaller than v

4) 1eR, |ﬂ,| >1 = Av s larger than v

e Diagonalization

Suppose {Vi € R”Xl},n_l are linearly independent and Av, = Av for AeR™", then

AV =VA with V=[v,---v,] and A=diag(4, -4,

Similarity transform by V diagonalize A since V is invertible = VAV = A
Conversely, VAV =A = {v,}.' arelinearly independentand Av; = A4V

A is diagonalizable if such V exists or A has linearly independent set of eigenvectors.
A is diagonalizable if A has distinct eigenvalues.
A is defective if it is not diagonalizable.

Defective matrix can be put in Jordan canonical form.

e Symmetric matrix

AcR™ and A=A
(1) Eigenvalues of A are real.

(2) There is a set of orthonormal eigenvectors of A

(a) a{qi}i”=1 such that Ag; =40, and qq; =5,

(b) If {ﬂi}in:l are distinct, corresponding eigenvectors are orthogonal. If not,

choose eigenvectors so that they are orthogonal.
(© Q'AQ=Q'AQ=A=diag(4, -, 4)
(d) A=QAQ" =) 40q,q : decomposition of linear combination of one-
i=1

dimensional orthogonal projections
(3) Interpretations of linear mapping y = Ax
(@) Resolve x into (], coordinates

12
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(b) Scale coordinates by A

(c) Reconstruct with basis g

X QTx AQTx QAQTX = AX
I QT A Q Ly

(4) Geometric interpretation
(a) Rotate by Q'
(b) Diagonal real scale by A
(c) Rotate back by Q

e Normal matrix
- AeR™ isnormalif AAT=ATA
(1) Symmetric matrix is normal; A =AT

(2) Skew symmetric matrix is normal; A =-A'

- AAT=ATA & 3Q such that QTAQ=A, A=QAQ" =) Aqq; ., QQ" =1,

i=1

A=diag(4, -+, 4,)

e Gram matrix

- For X=[x,---x,]€R™", Gram matrix or Grammian is X' X eR"™

- {x.}  are linearly independent < det(X"X)=0
{ I}|71 (

- Factorization
(1) QR factorization: X=QR, Q=XR™", Q'X=R

(2) Cholesky factorization: G=X'X=R'Q'QR=R'R(=LU =LDU)

e Quadratic forms

- Afunction f:R" >R oftheform f(x)=x Ax= Z ;%X; 1s a quadratic form.
i,j=1

- Examples: |Bx|" =x"B"Bx, Zn:(xi+l -x),

Fx| - Jex]

- Uniqueness: if X"Ax=x"Bx forall xeR" and A=A",B=B", then A =B.

13
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- {x:f(x)=a} is a quadratic surface.

- {x:f(x)<a} isa quadratic region.

- If A=A", A=QAQ" with 4> >4, then
(1) AXX<X'AX<SAX'X, A =4, and A =4,

(2) qlAq,=Aqy)f and dlAq, =4,

- For A=A" eR",
(1) If X' Ax>0 forall x,
(@) A is positive semidefinite and A>0
(b) A>0 iff A, (A)=0
(2) If X' Ax>0 forall x,
(a) A is positive definite and A >0
(b)y A>0 iff 2, (A)>0
(3) A is negative semidefinite if —A>0
(4) A is negative definite if —A>0
(5)If B=B",
(a) A>B if A-B>0
(b) A<B if A-B<0

(c) A>B means X' Ax>X'Bx forallx=0

- Ellipsoids: with A= AT, the set {X :XTAX < 1} is an ellipsoid in R" centered at 0.

(1) Semi-axes: S; = A{qui

(@) Eigenvectors define directions of semiaxes

(b) Eigenvalues determine lengths of semiaxes

(€) (05,4 = Ane ) direction: smallest length, thin
(d) (9,4, = Ann) direction: largest length, fat

(2) J Ayax/ Amin = maximum eccentricity

14
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e Matrix norms
For AeR™",

(1) Matrix norm or spectral norm of A: ||A||: m%x% = maximum gain or
X#

amplification factor

2 TAT
(2) Since max ”AX|2| :rggxx A ;Ax
[ [

— ““max

= o (ATA),

A= A (ATA)
(3) Similarly, minM: ain(ATA)
w0 |
(4) Observations
(@ A"AeR™ issymmetricand ATA>0 = 4,4, >0

(b) (ql, Avax = ﬂi(ATA)): maximum gain input direction

(c) (qn s Ain = (ATA)) : minimum gain input direction
Properties of matrix norm
(1) For xeR™, 4. (xTx) =x'x =[]

(2) For any x, AX|| < ||A|| ||X||

(3) Scaling: A <|e| |A]
(4) Triangle inequality: ||A+B|<|A[+]|B]|
@ |Al=0= A0

(6) | AB] < |All8|

For AeC™,

1/2
(1) F-norm (Frobenius norm) is ||A||F = {z ‘aij‘z}
e

1]

15
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|Ax],

I,

(2) p-norm is ||A||p:sup
x#0

e Matrix inversion formula
- Inverse of a partitioned matrix

R{A B} - R‘lz[ EL FHl}
C D H'G H*
E=A-BD'C

AF =-B
GA=-C
H=D-CA'B

- Matrix inversion lemma
E=A-BD'CoE*'=A'+FH'G

- Partitioned matrix inverse

2 g oy e

- Woodbury’s identity (rank 1 update)

— L RJuu'Ry

R=R,+7uu' @« R*'=R*+
ot7 0 1+y2uTRglu

16
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Singular Value Decomposition (SVD)

e SVD of A
- AeR™, rank(A)=r

- A=UZV' =) ouv]

i=1

(1) U=[u,---u,]eR™", U'U=I,, u; areright or input singular vectors of A

2) V=[v;---v,]eR™, VTV =1, v, are left or output singular vectors of A

(3) = =diag(oy, --+,0,) with o,>--- >0, >0, o; arenonzero singular values of
A
n r r n
> VAR
m A =m U
n r r n
p A r

m A =m| U

- ATA=(UZVT) (UZVT)=VERT
(1) v, are eigenvectors of ATA

(2) o,=\A4(A'A) and 4(ATA)=0 fori>r

@) [Al= i (ATA) =0,

- AAT=(UzVT)(UzVT) =UsEUT

17
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(1) u; are eigenvectors of AA'
(2) 0,=\JA(AAT) and A (AAT)=0 fori>r
{u;}., are orthonormal basis for R(A)

{v,}., are orthonormal basis for N (A)

e Full SVD

AcR™" rank(A)=r

A=UZV' =) ouv]

i=1

(1) U, =[u;---u,]eR™", find U,=[u,,,---u,]eR™™" suchthat UeR™" and
u'u=1,

r+l

2) V,=[v,---v,]eR™, find V,=[v,,---v,]eR™™ " such that VeR™ and
( 1 1 r 2 n

ViVl
(3) £, =diag(oy, ---,0,) with o,> - >0,>0, o; are nonzero singular values
s 0.
of A, construct ¥ = ' PO e g
o(m—r)xr O(m—r)x(n—r)

18
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n m n
r r -
V, [
2 1 n
A = m Ul U 2 V;—
0
n m n
r r T
) 0 Vi r
A = m y, U, 1
0 0 ; "
Vs,
e Interpretations of SVD
Decomposition of linear mapping y = AX = UZV'x
(1) V'x: coefficients of x along input directions, {v,}
T . . r
(2) ZV'x:scalingby {o}}
(3) UZV'X: reconstruction along output directions, {u}:
X VTx TV X UZVTx = Ax

Av, =ou,

(1) v, isthe most sensitive (highest gain) input direction

(2) u, is the most sensitive (highest gain) output direction

Geometric interpretation of y = Ax=UZV'X

(1) V' : rotation

(2) X: scaling; stretched or compressed or squashed to zero (o; =0)

(3) Zero padding (if m > n) or truncation (if m < n) to get m-vector

(4) U: rotation

e Pseudo-inverse
For AcR™, A=UZV' and A" =VZ'U" in compact form

19



BNET7049 Statistical Bio-signal & Image Processing Kyung Hee Univ.

(1) If m > n (narrow) and rank(A) =n, A" =VZU' = (ATA)fl A" = least squares
solution
(2) If m < n (wide) and rank(A) = m, A" =VZ U = AT (AAT )71 = minimum

norm solution

- Properties
(1) A'A=I,

(2) AA" =P, (see Projection)
(3) A"AA=A
(4) A*AA* = A"

e Projection

- Assume R(A)=R" for some matrix A= [al 8,80,

. an] eR™", then
(1) rank(A) =n

(2) {a};, are linearly independent.

(3) span{a}; =R"
- Partition A into S and N

(1) A=[S N]

(2 S= [a1 ---ap} €R™" and let the subspace S =span{a;}’ =R(S)

n

(3) N= [aml - an] eR™™P and let the subspace N =span{a;} =R(N)

i=p+1l
- BySVD, S=UZ.V," and N=U 2V,

(1) S=span{a}’ =R(S)=R(Us)

i=1

n

(2) N=span{a;}__. =R(N)=R(U))

i=p+1

(3) S®N=R" and S*=N

- Projection: for any xeR", x=Pyx+PX

20
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(1) P,=5(S'S) ST =UU] and P, =N(N'N) N =U, U}, =1,-UU!

(2) Idempotent: P; =P, =P and P =P, =P;
(3) PsPy=PPs=0 and Ps+P =1,

(4) Let U=[Ug U,]

o 1,0
(a) UPSU—[O o}

(b) U'P u{o 0 }
" 0 I(n—p)

(5) Eigenvalues of Py and P, are 1 and 0.

e Rotation

Same setup as above in projection

Rotate in the subspace S or rotate around the subspace N
X=Q.x with Q;=U,QUi+P, and Q'Q=QQ" =1,

PyX component is not changed.

Pst = QsPs

21
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e SVD in estimation and inversion
Model: y=AXx+V

(1) x is what we want to estimate.

(2) y is sensor measurements.

(3) v is unknown noise or measurement error with ||v|| <«

Optimality of least squares estimator
(1) Consider a linear estimator X =By with BA=1

(2) Error is e=X—x=Bv and the set of possible estimation errors is an ellipsoid

ecE={Bv:|v|<a|
(3) Uncertainty ellipsoid £ must be small since |le| =[%—x|<«|B|

(4) Using SVD, we can prove that ‘A+

-jvsu|<aca) A

<[B]

e Condition number

Error analysis of X=A"'y for AeR"™ and invertible
(1) Assume error or noise iny as Yy + 90y

(2) x=x+06x with ox=A"Sy and |ox|=|A"sy|<|A™][sY]

@3) ” ” ”A”HA H ”53’” K(A)M

x| vl Iyl

(4) Condition number of A is x(A) = T (A) = can compute using SVD

O min (A)
(5) If x(A) is large, A is practically singular and ill-conditioned. If small, well-

22
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conditioned.
(6) o

- Use regularization for the solution of y = Ax with ill-conditioned A.

(A) is distance to nearest singular matrix.

min

e Low rank approximation or model simplification

- AeR™, rank(A)=r,and A=UZV' => cuV/

i=1

- Assume 0,>0,>-->0, and {o;} areall small, then we can approximate A

i=p+1

by the optimal rank p approximator,

r
> ouv]

i=p+1

iYi Vi :O_p+l+”.+o-r

A=Y ouy] and [A-A|-
i=1
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Solution of Ax =b for A € R™

e Matrix multiplication, C = AB

- ¢ =ab;, ¢;=Ab;, {;=&B

- (AB)C=A(BC)

- A(B+C)=AB+AC and (B+C)D=BD+CD

- FE=#EF, in general

e Matrix transpose, A’

(AT )ij - (A)ii

- (AB) =B'A’

e System of linear equations

- Consider a system of linear equations, Yy = AX, i.e.,
Y1 =auX +aX, o0+ a, X,
Y, = X taynX, -+ ay X,

Yo =8y X ta,X, +- -+, X

n

Y1 a; a4, - &, X

y a a - a . X
where y=|"?|eR", A=| & % | 2 eR™ and x=| ’|eR"

yn anl an2 a‘nn Xn

- Three possibilities: one solution, no solution, infinite solutions

e Geometry
- Example:

5 < AR - TS
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| y
(15)
(2,3) v
/”,,,,;2(211)
(—1, 1)\ (21)
0 X | |
2x—-y=1 X+y=5 2x—y=1 '

- In R®, ax+by+cz=d isaplane. Ifd=0, it passes the origin. If d # 0, it is parallel
to the plane with d = 0. All of these planes are perpendicular to the vector [a, b, C]T .

- Ax=b, AeR™
(1) Intersection of n planes:

~T =Ty

aq, 1 X= bl
ST T

a Xx=Db
2 |x=b or ? 2

=T ~

an, ax=h

(2) Linear combination of column vectors equals to b:
[a,a,--a,]x=b or xa+xa,+-+xa,=b
(3) Coordinates of intersection point = coefficients of linear combination

- Singularity: no solution or infinite solutions
(1) No intersection point or infinite intersection points

XA WS

(a) 2 parallel: no solution
(b) No intersection: no solution
(c) All parallel: no solution

(d) Line of intersection: infinite solutions

(2) bespan{a;};
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e Gaussian elimination

- (Forward elimination + backsubstitution) or (factorization + forward substitution +

backsubstitution)
- Example:
2X+Yy+2=5
4x -6y =2 =
—2X+7y+2z=9
2 1 1 5 2 1 1 5 2 1 1 5

4 6 0 2|0 8 -2 -12|=|0 8 -2 -12
-2 7 2 9 0 8 3 14 0O 0 1 2

(1) Pivots cannot be zero.
(2) If pivot is zero, change order (rows) if possible (permutation).
(3) If all possible pivots are zero, A is singular (i.e., A is not invertible).
- After elimination with O(n®), solve for x by back substitution with O(n?).

e LU or LDU factorization

- For repeated solutions with different RHS, store multipliers during elimination
process in a lower triangular matrix L. Main diagonal elements of L are all one.

- Store pivots and the rest of each row in an upper triangular matrix U. Main diagonal
elements of U are pivots.

1 0O 2 1 1
L={-2 1 0| and U=|0 -8 -2
1 11 0 0 1

- We can split U into D and U as

1 0O 2 0 0 11 1
L=-2 1 0, b=|0 -8 0| and U=|0 1 -2
1 11 0 0 1 0 0 1

- Using LU factorization, A = LU. For a given b,
(a) Forward substitution with O(n®) : solve Le = b for ¢
(b) Backsubstitution with O(n?) : solve Ux = ¢ for x

- Using LDU factorization, A = LDU. For a given b,
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(a) Forward substitution with O(n?) : solve Le = b for ¢
(b) Simple divisions with O(n) : solve De = ¢ for e
(c) Backsubstitution with O(n?) : solve Ux = e for x

e Inverse matrix

Ax = b has a unique solution. < A is nonsingular. <> A exists.
If A™ exists, Xx=A"D and A"A=land AA*=1.

All pivots are nonzero. <> A’ exists.

All eigenvalues are nonzero. <> A exists.

Determinant of A is nonzero. < A™ exists.

(AB)—l ~BIAY, (A—l)T _ (AT )’l

e Symmetric nonsingular matrix

A is symmetric <& A=A"
If A is symmetric and nonsingular, A =LU=LL" =U"U: Cholesky factorization
If A is symmetric and nonsingular, A=LDU=LDL" =U'DU

e Comments

If all pivots are povitive, A is called positive definite.
If A is ill-conditioned,

(1) Computation is sensitive to a small numerical error.

(2) Use partial pivoting where we pick up the largest pivot among all possible pivots.

This requires permutation.

If A is not 1ll-conditioned, it is well-conditioned.
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Solution of Ax =b for A € R"*"

eAx=Db
- Scalar example: ax =b
(@) a # 0 = unique solution, nonsingular
(b) @ = 0 and b = 0 = infinite number of solutions, underdetermined
(¢) a=0and b # 0 = no solution, inconsistent
- Ax=b, AeR™
(@) Infinite number of solutions for every b
(b) Infinite number of solutions for some b and no solution for other b

(c) One solution for some b and no solution for other b

- Example
1 3 32 1 3 3 2 13 32
A=2 6 9 5/=/0 0 3 1|=/00 3 1|=U
_—1 -3 30 0 0 6 2 0 0 0O
_1 3 3 2 1 00
u=|0 9 § 1| :echelonform, L=|{ 2 1 0|,and A=LU
00 00 -1 21
- PA=LU forany AeR™" with permutation P
e Homogeneous solution, Ax =0
- Ax=0=Ux=0
- Example
[ 3%, — X, | [ 1]
-3
1332 1 o 1 X, 0
X, Xy =—=X, 1
0031X=0:> 3 =>X= 1 =x20+x41
° _Iy _z
000 0f. ] [0 u=-3%-% 3
X, 0
L X L1

- Two kinds of variables

(a) Column with pivot = basic variable (X, and x,)

(b) Column without pivot = free variable (X, and X, )

- Procedure for homogeneous solution
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(a) Identify basic and free variables from Ux = 0
(b) For each free variable, set it to 1 and set all other free variables to 0. Solve Ux =0
(c) Combinations of all solutions from (b) equal to N(A)

Comments

(@) If n > m (wide matrix), nontrivial homogeneous solutions (x # 0) of Ax = 0 exist.

(b) Number of free variables = dim{N(A)}

(c) Finding homogeneous solutions is equivalent to finding N(A).

e Inhomogeneous or particular solution, Ax=Db = 0

Ax=b=Ux=c¢

Example
13 3 2™ b, ¢,
- X
00 31 XZ_ b,—-2b |=|c,
000 0f | [B=20,450] [
4
1 3 32
A=l2 6 9 5|=[aa,a,3,]
1 -3 30

133 2]% 1
- X X, =1-=X
If b=[1 5 5], |0 3 1| 7|=[3] and {773
000 ol | (O X ==2-3% X,
X4
X, -2 -3 -1
x=| 2l |0 ax] tlax ’
x| |1 ol ™ —%
X, 0 0 1

particular solution

homogeneous solution

Procedure for particular solution
@ Ax=b=Ux=¢c
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(b) Set all free variables to 0 and solve Ux = ¢ for x

e Total solution, Ax=b # 0

- Total solution = particular solution + homogeneous solution (X =X, +X;)

- Number of basic variables = » = number of pivots = rank(A) = number of independent
columns = number of independent rows

- Number of free variables = n —r

e Comments

- Echelon form with 7 pivots, {ui }Ll

- r=n = no free variable, N(A)= {O} , nontrivial homogeneous solution does not

exist, {a;};, are linearly independent
- r<n= (n-r) free variables, nontrivial homogeneous solution exists
- r=m = particular solution exists forany beR"™, R(A)=R"
- r<m

(@ c,,=c¢,,,=-=C,=0 = system is consistent and particular solution exists

(b) ¢, 20 forsome m—r<i<m = system is inconsistent and particular solution

does not exists

- rank(A) =r < min(m, n)

o Inverse of AeR™"

- Leftinverse: BA=1,BeR™
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- Rightinverse: AC=1_,CeR™

- Ifboth B and C exist, B=B(AC)=(BA)C=C=A" andm=n

¢ Existence and uniqueness of solution of Ax=b, AcR™"
- Existence (m > n, narrow matrix): one or many solutions
(@) Ax = b has “at least” one solution for every b iff R(A)=R".

(b) In this case, » = m and right inverse CeR™" exists such that AC=1 .

(c) B=(ATA)"A" and rank(ATA)=n
(d) Least squares (LS) solution

- Uniqueness (m < n, wide matrix): one or zero solution
(@) Ax = b has “at most” one solution for every b iff n=r=dimR(A).

(b) In this case, » = n and left inverse B € R™™ exists such that BA=1, .

(c) C=A"(AAT)™ and rank(AAT)=m
(d) Minimum norm solution

e Square matrix (m = n)
- B=C=A'iffm=n=r
- Followings are equivalent
(@) R(A)=R™, Ax =b has at least one solution for any b

(b) N(A)={0}, columns of A are linearly independent

(©) R(AT)=R"
(d) Rows of A are linearly independent
(e) PA=LDU with all d;#0 (nonzero pivot)

(f) A™ exists such that AA"=A"A=1,

(9) det(A)=0
(h) All eigenvalues of A are nonzero
(i) ATA is positive definite
- Example: polynomial of degree (n — 1) has (n — 1) roots = Vandermonde’s matrix
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"I S A R IR
t

t et X b
Ax=|_ % 2 2 |I"?|=| ?|=b, Ais nonsingular
1t t2 - t"HIx, | |b,
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Four Subspaces of A € R"*"

e Four subspaces of AcR™"

Column space of A =range of A= R(A)=span{a,} cR", dimR(A)=r
Nullspace of A = N(A):{X:AX:O,XGR"}CR”, dimN(A)=n-r
Row space of A =range of AT = R(AT)=span{a}’ cR", dimR(A")=r

Left nullspace of A = nullspace of A" = N(AT):{y:ATy:O,yeRm}CRm ,

dimN(A") =m-r

e AcR™" and echelon form U (PA = LU)

R(A")=R(U") cR"

(@) dimR(A")=dimR(U") = number of pivots = = row rank = column rank
(b) Basis of R(A")=R(U") =rnonzero rows of U

N(A)=N(U)cR" (Ax=0< Ux=0)

(@ dimN(A)=dimN(U) =n—r=number of free variables = nullity of A
(b) ker(A)=N(A)=N(U)<cR": kernel of A

(c) For each free variable, we can generate one basis vector

R(A) = R(U),R(A) cR"

(@ R(U)=span{u} <R"

(b) dimR(A)=dimR(U)= number of pivots = r = column rank = row rank

e Dimensions

dimR(A) =dimR(A") = number of pivots = rank(A)

Number of basic variables () + number of free variables (7 — ) = number of columns
(n) < dimR(A)+dimN(A)=n

r+(m-r)=m< dimR(A") +dimN(AT)=m
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Linear Transformation, y = Ax

e Linear transformation, y =Ax, AcR™", xeR", yeR"
- Linearity: A(cx+dy) =c(Ax)+d(Ay)

- Examples

c 0
(@) Stretching: A= [ } =cl
0 c

0 -1
(b) Rotation: A= L }

0
3(-1.1) y o 7
w2 ( 2, 1)
(-12) (21
0 = X 0 X
, 0 1
(c) Reflection: A= }
10
10
d) Projection: A=
(d) Projection 0 O}
y y
4
/ X 0 > X

- Linear transformation matrix A depends on basis

e Basis and linear transformation

- V= Zn:CiXi with a basis {x}. ,then Av= Zn:CiAXi
i=1 i=1

- AV oW with V =span{x;}. and W =span{y,}" = Ax :Zm:ajiyj

=L

- A:V W and B:U >V = AB:U W (e, z=Ay=ABX)

e Rotation
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c -sS cosgd —sin@
) QGZL c}:{sine cose}
c -S|l c s 10
) Q‘QQBZ[S c}{—s c}:{o J

- Q; =Q,Q, =Q,, and QHQ(p = Q9+¢

e Projection

Lo > 0
C Cs)
/CZ > X

R

- P; =P,P, =P,: idempotent

- P, =P,: symmetric

e Reflection
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2c2—1 2cs
- H,= ,
2cs  2s°-1

- H,=2P,—1 or H,+1=2P,

- Hi=H,H,=(2P,—1)"=4P?—4P? +1=1 = H;'=H,

36



